热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Hadoop单机版快速搭建及测试

2019独角兽企业重金招聘Python工程师标准一、快速配置Hadoop并启动(为了快速上手用单机搭建):hadoop下载地载:http:mirror.bit.



2019独角兽企业重金招聘Python工程师标准>>> hot3.png



一、快速配置Hadoop并启动(为了快速上手用单机搭建):


hadoop下载地载:http://mirror.bit.edu.cn/apache/hadoop/ 
1、修改配置文件:
core-site.xml



   
        fs.defaultFS
        hdfs://localhost:9000
   



hdfs-site.xml



   
        dfs.replication
        1
   


mapred-site.xml



   
        mapreduce.framework.name
        yarn
   


yarn-site.xml



   
        yarn.nodemanager.aux-services
        mapreduce_shuffle
   


hadoop-env.sh


export JAVA_HOME=/usr/java/jdk1.8.0_121

2、格式化文件系统


./hdfs namenode -format

3、启动名称节点和数据节点后台进程


./sbin/start-dfs.sh


 启动ResourceManger和NodeManager后台进程


./sbin/start-yarn.sh

或者只用


./sbin/start-all.sh

二、测试


2.1 HDFS测试


使用浏览器查看hdfs目录,端口号是50070:



操作材料下载


https://pan.baidu.com/s/1hs62YTe


进入hadoop解压目录下的bin目录, HDFS创建目录:


./hdfs dfs -mkdir /wordcount
./hdfs dfs -mkdir /wordcount/result
./hadoop fs -rmr /wordcount/result

拷贝input文件夹到HDFS目录下


./hdfs dfs -put /opt/input /wordcount

查看文件列表:


./hadoop fs -ls /wordcount/input

2.2 MapReduce测试


是参考官方文档的wordcount实验,将wordcount的代码译并打包,放到服务器的目录(/opt/testsource)下(注意不是hdfs的目录下)


并将测试的要进行wordcount的文件放入hdfs的/wordcount/input目录下


执行hadoop job


./hadoop jar /opt/testsource/learning.jar
hadoop.WordCount /wordcount/input /wordcount/result

确认执行结果


hdfs dfs -cat /wordcount/result/*

 


附wordcount代码:


package hadoop;
/**
* Created by BD-PC11 on 2017/3/29.
*/
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;
public class WordCount {
public static class Map extends MapReduceBase
implements Mapper {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, OutputCollector output,
Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);
}
}
}
public static class Reduce extends MapReduceBase
implements Reducer {
public void reduce(Text key, Iterator values,
OutputCollector output,
Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
}
}

 







转载于:https://my.oschina.net/u/2604795/blog/873061



推荐阅读
  • 本文探讨了 Kafka 集群的高效部署与优化策略。首先介绍了 Kafka 的下载与安装步骤,包括从官方网站获取最新版本的压缩包并进行解压。随后详细讨论了集群配置的最佳实践,涵盖节点选择、网络优化和性能调优等方面,旨在提升系统的稳定性和处理能力。此外,还提供了常见的故障排查方法和监控方案,帮助运维人员更好地管理和维护 Kafka 集群。 ... [详细]
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • 为了在Hadoop 2.7.2中实现对Snappy压缩和解压功能的原生支持,本文详细介绍了如何重新编译Hadoop源代码,并优化其Native编译过程。通过这一优化,可以显著提升数据处理的效率和性能。此外,还探讨了编译过程中可能遇到的问题及其解决方案,为用户提供了一套完整的操作指南。 ... [详细]
  • HBase Java API 进阶:过滤器详解与应用实例
    本文详细探讨了HBase 1.2.6版本中Java API的高级应用,重点介绍了过滤器的使用方法和实际案例。首先,文章对几种常见的HBase过滤器进行了概述,包括列前缀过滤器(ColumnPrefixFilter)和时间戳过滤器(TimestampsFilter)。此外,还详细讲解了分页过滤器(PageFilter)的实现原理及其在大数据查询中的应用场景。通过具体的代码示例,读者可以更好地理解和掌握这些过滤器的使用技巧,从而提高数据处理的效率和灵活性。 ... [详细]
  • HBase客户端Table类中getRpcTimeout方法的应用与编程实例解析 ... [详细]
  • HBase在金融大数据迁移中的应用与挑战
    随着最后一台设备的下线,标志着超过10PB的HBase数据迁移项目顺利完成。目前,新的集群已在新机房稳定运行超过两个月,监控数据显示,新集群的查询响应时间显著降低,系统稳定性大幅提升。此外,数据消费的波动也变得更加平滑,整体性能得到了显著优化。 ... [详细]
  • hadoop3.1.2 first programdefault wordcount (Mac)
    hadoop3.1.2安装完成后的第一个实操示例程 ... [详细]
  • com.sun.javadoc.PackageDoc.exceptions()方法的使用及代码示例 ... [详细]
  • 本文详细介绍了在 Ubuntu 系统上搭建 Hadoop 集群时遇到的 SSH 密钥认证问题及其解决方案。通过本文,读者可以了解如何在多台虚拟机之间实现无密码 SSH 登录,从而顺利启动 Hadoop 集群。 ... [详细]
  • Linux CentOS 7 安装PostgreSQL 9.5.17 (源码编译)
    近日需要将PostgreSQL数据库从Windows中迁移到Linux中,LinuxCentOS7安装PostgreSQL9.5.17安装过程特此记录。安装环境&#x ... [详细]
  • Spark与HBase结合处理大规模流量数据结构设计
    本文将详细介绍如何利用Spark和HBase进行大规模流量数据的分析与处理,包括数据结构的设计和优化方法。 ... [详细]
  • 如何在Linux服务器上配置MySQL和Tomcat的开机自动启动
    在Linux服务器上部署Web项目时,通常需要确保MySQL和Tomcat服务能够随系统启动而自动运行。本文将详细介绍如何在Linux环境中配置MySQL和Tomcat的开机自启动,以确保服务的稳定性和可靠性。通过合理的配置,可以有效避免因服务未启动而导致的项目故障。 ... [详细]
  • 本文介绍了如何利用Struts1框架构建一个简易的四则运算计算器。通过采用DispatchAction来处理不同类型的计算请求,并使用动态Form来优化开发流程,确保代码的简洁性和可维护性。同时,系统提供了用户友好的错误提示,以增强用户体验。 ... [详细]
  • 本文详细介绍了在CentOS 6.5 64位系统上使用阿里云ECS服务器搭建LAMP环境的具体步骤。首先,通过PuTTY工具实现远程连接至服务器。接着,检查当前系统的磁盘空间使用情况,确保有足够的空间进行后续操作,可使用 `df` 命令进行查看。此外,文章还涵盖了安装和配置Apache、MySQL和PHP的相关步骤,以及常见问题的解决方法,帮助用户顺利完成LAMP环境的搭建。 ... [详细]
  • Amoeba 通过优化 MySQL 的读写分离功能显著提升了数据库性能。作为一款基于 MySQL 协议的代理工具,Amoeba 能够高效地处理应用程序的请求,并根据预设的规则将 SQL 请求智能地分配到不同的数据库实例,从而实现负载均衡和高可用性。该方案不仅提高了系统的并发处理能力,还有效减少了主数据库的负担,确保了数据的一致性和可靠性。 ... [详细]
author-avatar
多米音乐_34084632
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有