热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

HadoopVS.Spark——如何选择合适的大数据框架

哪个大数据框架更适合你?来自四面八方的数据席卷而来,将我们裹挟进去。。随着数据每两年翻一番,数字宇宙正以飞快的速度追赶物理宇宙。据估计,到2020年,数字宇宙将达到44泽塔字节——

哪个大数据框架更适合你?

来自四面八方的数据席卷而来,将我们裹挟进去。。随着数据每两年翻一番,数字宇宙正以飞快的速度追赶物理宇宙。据估计,到2020年,数字宇宙将达到44泽塔字节——其数字位的数量相当于宇宙中恒星的数量。

《Hadoop VS. Spark——如何选择合适的大数据框架》
《Hadoop VS. Spark——如何选择合适的大数据框架》

数据还在不断增加,我们压根无法摆脱。为了消化这些所有的数据,市场上的分布式系统越来越多。在这些系统中,Hadoop和Spark经常作为直接竞争对手相互竞争。

在决定这两个框架中哪个更适合你时,我们需要根据几个基本参数对它们进行比较。

性能

Spark的速度非常快,已经优于Hadoop框架。它在内存和磁盘上的运行速度分别比Hadhoop快100倍和10倍。此外,它对100 TB数据的排序速度是Hadoop的3倍。

《Hadoop VS. Spark——如何选择合适的大数据框架》
《Hadoop VS. Spark——如何选择合适的大数据框架》

Spark如此之快是因为它处理内存中的所有东西。由于Spark的内存处理,它提供了对营销活动、物联网传感器、机器学习和社交媒体网站数据的实时分析。

然而,如果Spark和其他共享服务在YARN上运行,它的性能可能会下降。这可能导致RAM内存泄漏。另一方面,Hadoop则很容易处理这个问题。如果用户倾向于批处理,Hadoop要比Spark高效得多。

底线:Hadoop和Spark都有不同的处理方法。因此,是继续使用Hadoop还是Spark完全取决于项目的需求。

Facebook及其与Spark框架的过渡之旅

Facebook上的数据每秒钟都在增长。为了处理并利用这些数据,Facebook使用了分析技术。为此,它利用了以下几个平台:

  1. Hive平台来执行Facebook的一些批量分析。
  2. 用于自定义MapReduce实现的Corona平台。
  3. 对于基于ansi – sql的查询,很快就会占用内存。

上面讨论的Hive平台在计算上是“资源密集型”的。所以,维护它挑战巨大。因此,Facebook决定改用Apache Spark框架来管理他们的数据。今天,Facebook通过集成Spark为实体排名系统部署了一个更快的可管理管道。

《Hadoop VS. Spark——如何选择合适的大数据框架》
《Hadoop VS. Spark——如何选择合适的大数据框架》

安全

Spark的安全性问题仍在不断发展,因为它目前只支持通过共享(密码身份验证)进行身份验证。Apache Spark的官方网站也声称,“因为存在许多不同类型的安全问题,Spark并不一定能保护所有的数据。”

Hadoop则具有以下安全特性:Hadoop身份验证、Hadoop授权、Hadoop审计和Hadoop加密。所有这些都与Hadoop安全项目集成,如Knox Gateway和Sentry。

底线:在Hadoop与Spark的安全大战中,Spark的安全性比Hadoop稍差。但是,在与Hadoop集成Spark之后,Spark可以使用Hadoop的安全特性。

成本

首先,Hadoop和Spark都是开源框架,因此都是免费的。两者都使用普通服务器,运行在云上,并且似乎有一些相似的硬件需求:

《Hadoop VS. Spark——如何选择合适的大数据框架》
《Hadoop VS. Spark——如何选择合适的大数据框架》

那么,如何在成本的基础上进行评估呢?

请注意,Spark使用大量RAM在内存中运行所有数据。考虑到RAM的价格高于硬盘,这可能会影响成本。

另一方面,Hadoop是磁盘绑定的。这样,就能够节省购买昂贵RAM的成本。然而Hadoop需要更多的系统来分发磁盘I/O。

因此,在比较Spark和Hadoop框架的成本参数时,必须考虑它们的需求。

如果需求倾向于处理大量的大型历史数据,Hadoop是继续使用的最佳选择,因为硬盘空间的价格要比内存空间便宜得多。

另一方面,当我们处理实时数据的选项时,Spark可以节省成本,因为它使用的硬件少,能以更快的速度执行相同的任务。

底线:在Hadoop与Spark成本之争中,Hadoop的成本肯定更低,但当企业不得不处理更低数量的实时数据时,Spark是很划算的。

易用性

Spark框架最大的USPs之一是它的易用性。Spark为Scala Java、Python和SparkSQL(也称为Shark)提供了友好而舒适的api。

Spark的简单构建块使编写用户定义函数变得很容易。此外,由于Spark支持批处理和机器学习,因此很容易简化数据处理的基础设施。它包括一个交互式模式,用于运行带有即时反馈的命令。

Hadoop是用Java编写的,在编写没有交互模式的程序时,是编写程序绊脚石。虽然Pig(一个附加工具)使编程更容易,但它需要一些时间来学习语法。

一句话:在Hadoop与Spark的“易用性”之争中,两者都有自己的用户友好方式。然而,如果我们必须选择一个,Spark更容易编程并包含交互模式。

Apache Hadoop和Spark有可能实现协同关系吗?

是的,这是非常有可能的,所以我们推荐它。让我们详细了解一下它们如何协同工作。

Apache Hadoop生态系统包括HDFS、Apache Query和HIVE。让我们看看Apache Spark如何使用它们。

Apache Spark和HDFS的合并

Apache Spark的目的是处理数据。但是,为了处理数据,引擎需要从存储中输入数据。为此,Spark使用HDFS。(这不是唯一的选择,但却是最流行的选择,因为Apache是它们背后的大脑)。

Apache Hive和Apache Spark的混合

Apache Spark和Apache Hive是高度兼容的,它们可以一起解决许多业务问题。

例如,假设一个企业正在分析消费者行为。现在,该公司需要从各种来源收集数据,如社交媒体、评论、点击流数据、客户移动应用程序等等。

企业就可以使用HDFS存储数据,Apache hive作为HDFS和Spark之间的桥梁。

Uber及其合并的方式

为了处理消费者数据,Uber结合了Spark和Hadoop。它使用实时交通状况来提供特定时间和地点的司机。为了实现这一目标,Uber使用HDFS将原始数据上传至Hive,并使用Spark处理数十亿个事件。

《Hadoop VS. Spark——如何选择合适的大数据框架》
《Hadoop VS. Spark——如何选择合适的大数据框架》

Hadoop vs Spark:赢家是……

虽然Spark快速易用,但Hadoop的安全性、巨大的存储容量和低成本的批处理能力更胜一筹。从两个选项中选择一个完全取决于项目的需求。两者的结合将产生一个不可战胜的组合。

记住!

“两害相权取其轻;两样东西你都选吧。”

——泰伦爱德华兹

将Spark的一些属性和Hadoop的一些属性混合起来,形成一个全新的框架:Spoop。

喜欢文章请关注!后续推出更多精彩内容!


推荐阅读
  • 字节跳动深圳研发中心安全业务团队正在火热招募人才! ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 在第二课中,我们将深入探讨Scala的面向对象编程核心概念及其在Spark源码中的应用。首先,通过详细的实战案例,全面解析Scala中的类和对象。作为一门纯面向对象的语言,Scala的类设计和对象使用是理解其面向对象特性的关键。此外,我们还将介绍如何通过阅读Spark源码来进一步巩固对这些概念的理解。这不仅有助于提升编程技能,还能为后续的高级应用开发打下坚实的基础。 ... [详细]
  • 本文对SQL Server系统进行了基本概述,并深入解析了其核心功能。SQL Server不仅提供了强大的数据存储和管理能力,还支持复杂的查询操作和事务处理。通过MyEclipse、SQL Server和Tomcat的集成开发环境,可以高效地构建银行转账系统。在实现过程中,需要确保表单参数与后台代码中的属性值一致,同时在Servlet中处理用户登录验证,以确保系统的安全性和可靠性。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • 本文详细介绍了在 Ubuntu 系统上搭建 Hadoop 集群时遇到的 SSH 密钥认证问题及其解决方案。通过本文,读者可以了解如何在多台虚拟机之间实现无密码 SSH 登录,从而顺利启动 Hadoop 集群。 ... [详细]
  • 本文回顾了作者初次接触Unicode编码时的经历,并详细探讨了ASCII、ANSI、GB2312、UNICODE以及UTF-8和UTF-16编码的区别和应用场景。通过实例分析,帮助读者更好地理解和使用这些编码。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 结城浩(1963年7月出生),日本资深程序员和技术作家,居住在东京武藏野市。他开发了著名的YukiWiki软件,并在杂志上发表了大量程序入门文章和技术翻译作品。结城浩著有30多本关于编程和数学的书籍,其中许多被翻译成英文和韩文。 ... [详细]
  • MySQL 5.7 学习指南:SQLyog 中的主键、列属性和数据类型
    本文介绍了 MySQL 5.7 中主键(Primary Key)和自增(Auto-Increment)的概念,以及如何在 SQLyog 中设置这些属性。同时,还探讨了数据类型的分类和选择,以及列属性的设置方法。 ... [详细]
  • 数字中心在厦门大数据安全开放创新应用大赛中荣获交通专题算法赛一等奖
    数字中心的数据应用分析团队在“厦门大数据安全开放创新应用大赛·交通专题”中荣获算法赛一等奖。 ... [详细]
  • Presto:高效即席查询引擎的深度解析与应用
    本文深入解析了Presto这一高效的即席查询引擎,详细探讨了其架构设计及其优缺点。Presto通过内存到内存的数据处理方式,显著提升了查询性能,相比传统的MapReduce查询,不仅减少了数据传输的延迟,还提高了查询的准确性和效率。然而,Presto在大规模数据处理和容错机制方面仍存在一定的局限性。本文还介绍了Presto在实际应用中的多种场景,展示了其在大数据分析领域的强大潜力。 ... [详细]
  • 如何精通编程语言:全面指南与实用技巧
    如何精通编程语言:全面指南与实用技巧 ... [详细]
  • 2012年9月12日优酷土豆校园招聘笔试题目解析与备考指南
    2012年9月12日,优酷土豆校园招聘笔试题目解析与备考指南。在选择题部分,有一道题目涉及中国人的血型分布情况,具体为A型30%、B型20%、O型40%、AB型10%。若需确保在随机选取的样本中,至少有一人为B型血的概率不低于90%,则需要选取的最少人数是多少?该问题不仅考察了概率统计的基本知识,还要求考生具备一定的逻辑推理能力。 ... [详细]
author-avatar
i1L3i1L4
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有