热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

HAWQ取代传统数仓实践(八)——维度表技术之角色扮演维度

单个物理维度可以被事实表多次引用,每个引用连接逻辑上存在差异的角色维度。例如,事实表可以有多个日期,每个日期通过外键引用不同的日期维度,原则上每个外键表示不同的日期维度视图,这样
        单个物理维度可以被事实表多次引用,每个引用连接逻辑上存在差异的角色维度。例如,事实表可以有多个日期,每个日期通过外键引用不同的日期维度,原则上每个外键表示不同的日期维度视图,这样引用具有不同的含义。这些不同的维度视图具有唯一的代理键列名,被称为角色,相关维度被称为角色扮演维度。
        当一个事实表多次引用一个维度表时会用到角色扮演维度。例如,一个销售订单有一个是订单日期,还有一个请求交付日期,这时就需要引用日期维度表两次。
        我们期望在每个事实表中设置日期维度,因为总是希望按照时间来分析业务情况。在事务型事实表中,主要的日期列是事务日期,例如,订单日期。有时会发现其它日期也可能与每个事实关联,例如,订单事务的请求交付日期。每个日期应该成为事实表的外键。
        本篇说明两类角色扮演维度的实现,分别是表别名和数据库视图。表别名是在SQL语句里引用维度表多次,每次引用都赋予维度表一个别名。而数据库视图,则是按照事实表需要引用维度表的次数,建立相同数量的视图。我先修改销售订单数据库模式,添加一个请求交付日期字段,并对数据抽取和装载脚本做相应的修改。这些表结构修改好后,插入测试数据,演示别名和视图在角色扮演维度中的用法。

一、修改数据库模式


1. 修改源库表结构

        执行下面的脚本,给源库中销售订单表sales_order增加request_delivery_date字段。
use source;    alter table sales_order add request_delivery_date datetime after order_date ;

2. 修改数据仓库表结构

-- 修改外部表drop external table ext.sales_order;  create external table ext.sales_order    (       order_number int,          customer_number int,          product_code int,          order_date timestamp,   request_delivery_date timestamp,     entry_date timestamp,          order_amount decimal(10 , 2 ),      order_quantity int   )      location ('pxf://mycluster/data/ext/sales_order?profile=hdfstextsimple')        format 'text' (delimiter=e',', null='null');    comment on table ext.sales_order is '销售订单外部表';    comment on column ext.sales_order.order_number is '订单号';    comment on column ext.sales_order.customer_number is '客户编号';    comment on column ext.sales_order.product_code is '产品编码';    comment on column ext.sales_order.order_date is '订单日期'; comment on column ext.sales_order.request_delivery_date is '请求交付日期';  comment on column ext.sales_order.entry_date is '登记日期';    comment on column ext.sales_order.order_amount is '销售金额';   comment on column ext.sales_order.order_quantity is '销售数量';  -- 修改rds.sales_orderalter table rds.sales_order add column request_delivery_date timestamp default null; comment on column rds.sales_order.request_delivery_date is '请求交付日期';  -- 修改tds.sales_order_factalter table tds.sales_order_fact add column request_delivery_date_sk bigint default null; comment on column tds.sales_order_fact.request_delivery_date_sk is '请求交付日期维度代理键';  comment on column tds.sales_order_fact.order_date_sk is '订单日期维度代理键';
        增加列的过程已经在“HAWQ数据仓库实践(六)——增加列”(http://blog.csdn.net/wzy0623/article/details/72651785)详细讨论过。HAWQ不支持给外部表增加列,因此需要重建表。在销售订单外部表上增加请求交付日期字段,数据类型是timestamp,对应源库表上的datetime类型。注意外部表中列的顺序要和源表中列定义的顺序保持一致。
        RDS和TDS中的内部表直接使用ALTER TABLE语句增加请求交付日期列。因为HAWQ的ADD COLUMN不支持after语法,新增的字段会加到所有已存在字段的后面。修改后数据仓库模式如图1所示。
图1

        从图中可以看到,销售订单事实表和日期维度表之间有两条连线,表示订单日期和请求交付日期都是引用日期维度表的外键。注意,虽然图中显示了表之间的关联关系,但HAWQ中并不支持主外键数据库约束。

二、修改定期数据装载函数
create or replace function fn_regular_load ()        returns void as        $$        declare            -- 设置scd的生效时间          v_cur_date date := current_date;              v_pre_date date := current_date - 1;          v_last_load date;      begin          -- 分析外部表          analyze ext.customer;          analyze ext.product;          analyze ext.sales_order;                -- 将外部表数据装载到原始数据表          truncate table rds.customer;            truncate table rds.product;                 insert into rds.customer select * from ext.customer;           insert into rds.product select * from ext.product;          insert into rds.sales_order 	select order_number,           customer_number,           product_code,           order_date,           entry_date,           order_amount,           order_quantity,           request_delivery_date 	  from ext.sales_order;                    -- 分析rds模式的表          analyze rds.customer;          analyze rds.product;          analyze rds.sales_order;                -- 设置cdc的上限时间          select last_load into v_last_load from rds.cdc_time;          truncate table rds.cdc_time;          insert into rds.cdc_time select v_last_load, v_cur_date;                -- 装载客户维度          insert into tds.customer_dim          (customer_number,           customer_name,           customer_street_address,           customer_zip_code,           customer_city,           customer_state,         shipping_address,          shipping_zip_code,          shipping_city,          shipping_state,           isdelete,           version,           effective_date)          select case flag                       when 'D' then a_customer_number                      else b_customer_number                  end customer_number,                 case flag                       when 'D' then a_customer_name                      else b_customer_name                  end customer_name,                 case flag                       when 'D' then a_customer_street_address                      else b_customer_street_address                  end customer_street_address,                 case flag                       when 'D' then a_customer_zip_code                      else b_customer_zip_code                  end customer_zip_code,                 case flag                       when 'D' then a_customer_city                      else b_customer_city                  end customer_city,                 case flag                       when 'D' then a_customer_state                      else b_customer_state                  end customer_state,                 case flag                       when 'D' then a_shipping_address                      else b_shipping_address                  end shipping_address,               case flag                       when 'D' then a_shipping_zip_code                      else b_shipping_zip_code                  end shipping_zip_code,                 case flag                       when 'D' then a_shipping_city                      else b_shipping_city                  end shipping_city,                 case flag                       when 'D' then a_shipping_state                      else b_shipping_state                  end shipping_state,               case flag                       when 'D' then true                      else false                  end isdelete,                 case flag                       when 'D' then a_version                      when 'I' then 1                      else a_version + 1                  end v,                 v_pre_date            from (select a.customer_number a_customer_number,                         a.customer_name a_customer_name,                         a.customer_street_address a_customer_street_address,                         a.customer_zip_code a_customer_zip_code,                         a.customer_city a_customer_city,                         a.customer_state a_customer_state,                        a.shipping_address a_shipping_address,                         a.shipping_zip_code a_shipping_zip_code,                         a.shipping_city a_shipping_city,                         a.shipping_state a_shipping_state,                        a.version a_version,                         b.customer_number b_customer_number,                         b.customer_name b_customer_name,                         b.customer_street_address b_customer_street_address,                         b.customer_zip_code b_customer_zip_code,                         b.customer_city b_customer_city,                         b.customer_state b_customer_state,                        b.shipping_address b_shipping_address,                         b.shipping_zip_code b_shipping_zip_code,                         b.shipping_city b_shipping_city,                         b.shipping_state b_shipping_state,                        case when a.customer_number is null then 'I'                              when b.customer_number is null then 'D'                              else 'U'                           end flag                    from v_customer_dim_latest a                     full join rds.customer b on a.customer_number = b.customer_number                    where a.customer_number is null -- 新增                      or b.customer_number is null -- 删除                      or (a.customer_number = b.customer_number                           and not                                  (coalesce(a.customer_name,'') = coalesce(b.customer_name,'')                               and coalesce(a.customer_street_address,'') = coalesce(b.customer_street_address,'')                               and coalesce(a.customer_zip_code,0) = coalesce(b.customer_zip_code,0)                              and coalesce(a.customer_city,'') = coalesce(b.customer_city,'')                               and coalesce(a.customer_state,'') = coalesce(b.customer_state,'')                            and coalesce(a.shipping_address,'') = coalesce(b.shipping_address,'')                               and coalesce(a.shipping_zip_code,0) = coalesce(b.shipping_zip_code,0)                              and coalesce(a.shipping_city,'') = coalesce(b.shipping_city,'')                               and coalesce(a.shipping_state,'') = coalesce(b.shipping_state,'')                            ))) t                   order by coalesce(a_customer_number, 999999999999), b_customer_number limit 999999999999;             -- 重载PA客户维度        truncate table pa_customer_dim;          insert into pa_customer_dim          select customer_sk,                customer_number,                   customer_name,                   customer_street_address,                   customer_zip_code,                   customer_city,                   customer_state,                 isdelete,                version,                 effective_date,                 shipping_address,              shipping_zip_code,             shipping_city,             shipping_state           from customer_dim           where customer_state = 'pa';           -- 装载产品维度          insert into tds.product_dim          (product_code,           product_name,           product_category,                isdelete,           version,           effective_date)          select case flag                       when 'D' then a_product_code                      else b_product_code                  end product_code,                 case flag                       when 'D' then a_product_name                      else b_product_name                  end product_name,                 case flag                       when 'D' then a_product_category                      else b_product_category                  end product_category,                 case flag                       when 'D' then true                      else false                  end isdelete,                 case flag                       when 'D' then a_version                      when 'I' then 1                      else a_version + 1                  end v,                 v_pre_date            from (select a.product_code a_product_code,                         a.product_name a_product_name,                         a.product_category a_product_category,                         a.version a_version,                         b.product_code b_product_code,                         b.product_name b_product_name,                         b.product_category b_product_category,                                        case when a.product_code is null then 'I'                              when b.product_code is null then 'D'                              else 'U'                           end flag                    from v_product_dim_latest a                     full join rds.product b on a.product_code = b.product_code                    where a.product_code is null -- 新增                      or b.product_code is null -- 删除                      or (a.product_code = b.product_code                           and not                                  (a.product_name = b.product_name                               and a.product_category = b.product_category))) t                   order by coalesce(a_product_code, 999999999999), b_product_code limit 999999999999;                -- 装载order维度            insert into order_dim (order_number, version, effective_date)           select t.order_number, t.v, t.effective_date              from (select order_number, 1 v, order_date effective_date                       from rds.sales_order, rds.cdc_time                      where entry_date >= last_load and entry_date = c.effective_date             and a.order_date = d.effective_date             and a.order_date = g.last_load and a.entry_date  
 
        函数做了以下两点修改:
  • 在装载rds.sales_order时显式指定了列的顺序,因为外部表与内部表列的顺序不一致。
  • 在装载销售订单事实表时,关联了日期维度表两次,分别赋予别名e和f。事实表和两个日期维度表关联,取得日期代理键。e.date_sk表示订单日期代理键,f.date_sk表示请求交付日期的代理键。
三、测试


1. 在源库中生成测试数据

        执行下面的SQL脚本在源库中增加三个带有交货日期的销售订单。
use source;  /*** 新增订单日期为昨天的3条订单。***/      set @start_date := unix_timestamp(date_add(current_date, interval -1 day));     set @end_date := unix_timestamp(current_date);   drop table if exists temp_sales_order_data;      create table temp_sales_order_data as select * from sales_order where 1=0;             set @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date));   set @request_delivery_date := from_unixtime(unix_timestamp(date_add(current_date, interval 5 day)) + rand() * 86400);         set @amount := floor(1000 + rand() * 9000);    set @quantity := floor(10 + rand() * 90);    insert into temp_sales_order_data values (126, 1, 1, @order_date, @request_delivery_date, @order_date, @amount, @quantity);      set @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date)); set @request_delivery_date := from_unixtime(unix_timestamp(date_add(current_date, interval 5 day)) + rand() * 86400);      set @amount := floor(1000 + rand() * 9000);    set @quantity := floor(10 + rand() * 90);    insert into temp_sales_order_data values (127, 2, 2, @order_date, @request_delivery_date, @order_date, @amount, @quantity);      set @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date));set @request_delivery_date := from_unixtime(unix_timestamp(date_add(current_date, interval 5 day)) + rand() * 86400);       set @amount := floor(1000 + rand() * 9000);    set @quantity := floor(10 + rand() * 90);    insert into temp_sales_order_data values (128, 3, 3, @order_date, @request_delivery_date, @order_date, @amount, @quantity);      insert into sales_order      select null,customer_number,product_code,order_date,request_delivery_date,entry_date,order_amount,order_quantity from temp_sales_order_data order by order_date;        commit ;

2. 执行定期装载函数并查看结果

~/regular_etl.sh
        使用下面的查询验证结果。
select a.order_sk, request_delivery_date_sk, c.date    from sales_order_fact a, date_dim b, date_dim c   where a.order_date_sk = b.date_sk      and a.request_delivery_date_sk = c.date_sk ;
        查询结果如图2所示。
图2

        可以看到只有三个新的销售订单具有request_delivery_date_sk值,6360对应的日期是2017年5月30日。

四、使用角色扮演维度查询


1. 使用表别名查询

select order_date_dim.date order_date,            request_delivery_date_dim.date request_delivery_date,            sum(order_amount),count(*)      from sales_order_fact a,        date_dim order_date_dim,            date_dim request_delivery_date_dim     where a.order_date_sk = order_date_dim.date_sk       and a.request_delivery_date_sk = request_delivery_date_dim.date_sk     group by order_date_dim.date , request_delivery_date_dim.date     order by order_date_dim.date , request_delivery_date_dim.date;

2. 使用视图查询

-- 创建订单日期视图  create view v_order_date_dim (order_date_sk,  order_date,  month,  month_name,   quarter,  year) as select * from date_dim;    -- 创建请求交付日期视图create view v_request_delivery_date_dim(request_delivery_date_sk,  request_delivery_date,  month,  month_name,  quarter,  year)   as select * from date_dim;  -- 查询select order_date,request_delivery_date,sum(order_amount),count(*)      from sales_order_fact a,v_order_date_dim b,v_request_delivery_date_dim c     where a.order_date_sk = b.order_date_sk       and a.request_delivery_date_sk = c.request_delivery_date_sk     group by order_date , request_delivery_date     order by order_date , request_delivery_date;

        上面两种实现方式是等价的。结果如图3所示。


图3

        尽管不能连接到单一的日期维度表,但可以建立并管理单独的物理日期维度表,然后使用视图或别名建立两个不同日期维度的描述。注意在每个视图或别名列中需要唯一的标识。例如,订单日期属性应该具有唯一标识order_date以便与请求交付日期request_delivery_date区别。别名与视图在查询中的作用并没有本质的区别,都是为了从逻辑上区分同一个物理维度表。许多BI工具也支持在语义层使用别名。但是,如果有多个BI工具,连同直接基于SQL的访问,都同时在组织中使用的话,不建议采用语义层别名的方法。当某个维度在单一事实表中同时出现多次时,则会存在维度模型的角色扮演。基本维度可能作为单一物理表存在,但是每种角色应该被当成标识不同的视图展现到BI工具中。


五、一种有问题的设计        为处理多日期问题,一些设计者试图建立单一日期维度表,该表使用一个键表示每个订单日期和请求交付日期的组合,例如:
create table date_dim (date_sk int, order_date date, delivery_date date);create table sales_order_fact (date_sk int, order_amount int);
        这种方法存在两个方面的问题。首先,如果需要处理所有日期维度的组合情况,则包含大约每年365行的清楚、简单的日期维度表将会极度膨胀。例如,订单日期和请求交付日期存在如下多对多关系:
订单日期  		请求交付日期2017-05-26 		2017-05-292017-05-27 		2017-05-292017-05-28 		2017-05-292017-05-26 		2017-05-302017-05-27 		2017-05-302017-05-28 		2017-05-302017-05-26 		2017-05-312017-05-27 		2017-05-312017-05-28 		2017-05-31
        如果使用角色扮演维度,日期维度表中只需要2017-05-26到2017-05-31六条记录。而采用单一日期表设计方案,每一个组合都要唯一标识,明显需要九条记录。当两种日期及其组合很多时,这两种方案的日期维度表记录数会相去甚远。
        其次,合并的日期维度表不再适合其它经常使用的日、周、月等日期维度。日期维度表每行记录的含义不再指唯一一天,因此无法在同一张表中标识出周、月等一致性维度,进而无法简单地处理按时间维度的上卷、聚合等需求。

推荐阅读
  • 一、Merge语句根据条件在表中执行修改或插入数据的功能,如果插入的数据行在目的表中存在就执行UPDATE,如果是不存在则执行INSERT:-避免了单独 ... [详细]
  • 目录一、salt-job管理#job存放数据目录#缓存时间设置#Others二、returns模块配置job数据入库#配置returns返回值信息#mysql安全设置#创建模块相关 ... [详细]
  • HBase运维工具全解析
    本文深入探讨了HBase常用的运维工具,详细介绍了每种工具的功能、使用场景及操作示例。对于HBase的开发人员和运维工程师来说,这些工具是日常管理和故障排查的重要手段。 ... [详细]
  • 本文详细介绍了优化DB2数据库性能的多种方法,涵盖统计信息更新、缓冲池调整、日志缓冲区配置、应用程序堆大小设置、排序堆参数调整、代理程序管理、锁机制优化、活动应用程序限制、页清除程序配置、I/O服务器数量设定以及编入组提交数调整等方面。通过这些技术手段,可以显著提升数据库的运行效率和响应速度。 ... [详细]
  • 本文详细介绍了Oracle数据库中审计日志(audit trail)的配置方法及各参数选项的功能,包括如何启用系统范围的审计记录,以及如何将审计数据存储在不同的位置和格式。 ... [详细]
  • 本文探讨了在使用阿里云RDS实例时遇到的一个时区问题。该问题导致系统时间与预期时间相差13小时。通过深入分析,发现问题是由于名为CST的时区存在多种解释,特别是在MySQL和Java之间进行时区协商时出现的误解。 ... [详细]
  • Windows服务与数据库交互问题解析
    本文探讨了在Windows 10(64位)环境下开发的Windows服务,旨在定期向本地MS SQL Server (v.11)插入记录。尽管服务已成功安装并运行,但记录并未正确插入。我们将详细分析可能的原因及解决方案。 ... [详细]
  • 本文介绍如何使用Objective-C结合dispatch库进行并发编程,以提高素数计数任务的效率。通过对比纯C代码与引入并发机制后的代码,展示dispatch库的强大功能。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • 深入理解 SQL 视图、存储过程与事务
    本文详细介绍了SQL中的视图、存储过程和事务的概念及应用。视图为用户提供了一种灵活的数据查询方式,存储过程则封装了复杂的SQL逻辑,而事务确保了数据库操作的完整性和一致性。 ... [详细]
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • MySQL DateTime 类型数据处理及.0 尾数去除方法
    本文介绍如何在 MySQL 中处理 DateTime 类型的数据,并解决获取数据时出现的.0尾数问题。同时,探讨了不同场景下的解决方案,确保数据格式的一致性和准确性。 ... [详细]
  • Explore a common issue encountered when implementing an OAuth 1.0a API, specifically the inability to encode null objects and how to resolve it. ... [详细]
  • 本文详细介绍了如何使用 MySQL 查询特定时间段的数据,包括今天、本周、上周、本月和上个月的数据。适合对 MySQL 查询感兴趣的读者。 ... [详细]
author-avatar
mobiledu2502928403
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有