热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

国内最强推荐系统,保姆级学习路线!!(含时间分配规划)

最近秋招快要结束了,然后一直有很多小伙伴经常在后台私信我计算机专业关于学习路线的问题,可能还是因为没有真正工作而感到迷茫,而我也作为科班生

最近秋招快要结束了,然后一直有很多小伙伴经常在后台私信我计算机专业关于学习路线的问题,可能还是因为没有真正工作而感到迷茫,而我也作为科班生一路走来,真的深知如果没有一个明确的方向,真的很容易走弯路,浪费大把的时间 。

了解我的小伙伴知道,我毕业的时候从事的是服务端方向,当然那个时候也如愿拿到了几个大厂的服务端offer。

但是。。

在即将毕业的时候,我放弃了所有的Offer,在有服务端知识储备的情况下,苦学大数据知识,在毕业后两个月也拿到了心目中的Offer。

其实说起来,那个时候真猛,如果放到现在,怎么说都是不敢这么做的。

目前各个大厂对算法岗给出了不可想像的待遇,确实按耐不住了我的欲望,所以毕业前夕我用了4-5个月学习这方面的知识内容。

开始很多知识点都是懵的,所以导致走了很多弯路,下面是我之前看过的资料和视频课程,很是不错,墙裂推荐给大家。

毕业后,平时工作日每天晚大概利用3-4个小时,周六日每天利用大概9-10个小时来学习,从而达到高级算法和数据结构的能力。

64a5b0dbdb322e8b450b377cc13c9aaf.png

你们都知道我之前从事Python、Java等方向工作,所以学习也相对来说比较轻松一些。在我学习后,我发现确实学习这些确实不需要更丰富的经验。

分布式大数据开发建议分成两部分学习,第一部分为大数据生态技术理论,第二部分为算法理论与实践。

学习后完全可以胜任分布式大数据开发,能都使用Hadoop、Spark、Kafka、Zookeeper、Flink等技术实现推荐系统建模、算法选择、算法应用的整个实战项目。结合推荐系统技术栈、实现推荐系统的搭建、用户画像的设计和特征中心的搭建。

如果你决心要在这个领域深耕,那么算法底层方面的知识坚决不可跨越的,欲速则不达。

分享一套当时我学习过的教程,有视频、代码、PPT等,帮助大家打好基础。

扫描二维码领取!

【添加人数过多,请耐心等待哈】

👇👇👇

93c4fe4f944c92f96f385c158481215e.gif

跟着这个路线重新去梳理一下你的学习路线,相信你对推荐算法能力会有质的提升。

资源已经整理好了,文末附下载方式!以下是大数据推荐详细内容介绍~ 

01

大数据技术生态

Hadoop平台

  • Hadoop大数据分布式平台安装搭建与部署

  • Hadoop大数据生态环境体系运维基础理论

  • Hadoop分布式框架系统理论知识

  • 分布式文件系统HDFS存储体系理论知识

  • 分布式文件系统HDFS Shell操作与代码实践

  • 分布式计算引擎MapReduce运行原理与实践开发

  • 分布式计算引擎常用数据计算引擎原理与实践开发

  • 分布式资源调度框架Yarn核心知识与调度原理

  • 分布式资源调度框架Yarn监控配置管理

  • 开源调度工具Airflow工作原理与使用教程

  • MapReduce实现用户行为分析实践

分布式锁服务Zookeeper

  • Zookeeper在大数据系统中的作用与地位

  • Zookeeper的框架原理与协调服务机制

  • Zookeeper分布式锁服务环境部署

  • Zookeeper锁服务Shell实践操作

  • Zookeeper监听器原理

  • Zookeeper竞争选主机制代码实践

  • Zookeeper服务器节点动态上下线实践

分布式数据仓库工具Hive

  • 分布式数据仓库设计定位

  • Hive数据仓库环境部署搭建

  • Hive-DDL查询&修改等实践操作

  • Hive基本语法操作及UDF、UDAF、UDTF应用实践

  • Hive实现动态分区插入原理及操作

  • Hive实现行专列,列传行原理及实践操作

  • Hive常用优化方法及数据倾斜问题分析

  • Hive实现多表关联,避免数据溢出原理及实践操作

  • Hive读取本地/集群文件,数据处理,数据落地实践

  • Hive 实践JOIN、LEFT JOIN、RIGHT JOIN FUll JOIN

  • Hive 排序优化,ORDER BY和Row() Number()区别

  • Hive 去重场景优化,Distinct和Group by实践

  • Hive 统计数据优化Count场景应用介绍实践

  • Hive 多表关联优化,MAPJOIN的应用场景实践

  • Hive 查询Json数据优化,字符串拼接优化

  • Hive 常用UDF函数原理介绍,实践应用

分布式数据库HBase/Redis

  • HBase数据库设计原理与存储方法

  • HBase物理存储结构和逻辑存储详情解析

  • HBase读写数据流程及Flush流程

  • HBase分布式环境安装部署

  • HBase基本SQL操作与代码实践

  • Redis物理存储结构和逻辑存储原理解析

  • Redis 常用5种数据结构类型结构解析

  • Redis 基本操作命令和应用场景解析

  • HBase RowKey设计原则与优化方法

分布式日志系统Flume

  • Flume在大数据生态系统中的定位与作用

  • Flume架构设计原理及流程

  • Flume自定义Source、Sink多维度实践

  • Flume断点续文件实践

  • Flume事务性及传输流程

  • Flume自定义拦截器原理与实践

 分布式消息队列系统Kafka

  • Kafka设计原理、定位及高可用性原理

  • Kafka与Flume的设计异同点

  • Kafka生产者LSR原理及ACK机制

  • Kafka消费者分区分配策略

  • Kafka分布式环境安装部署

  • Kafka生产者、消费者理论及结合实践

  • Flume+Kafka实时日志采集系统实践

分布式大数据计算引擎Spark

  • Structured Streaming双流join最佳实践

  • Spark原理与架构设计介绍

  • Spark和Hadoop的异同点分析

  • Spark分布式环境搭建部署

  • Spark几种运行模式的原理和对比

  • Spark RDD底层数据原理解析

  • Spark RDD 五种主要配置原理介绍

  • Spark RDD依赖关系与持久化

  • Spark Job的划分与调度信息抽取

  • Spark Transformation与Action算子的区别

  • Spark高可用保证的实现

  • Spark WordCount快速上手实践

  • Spark DataFrame的底层原理与基本操作

  • Spark DataFrame与DataSet之间的交互

  • Spark DataFrame、DataSet、RDD之间的关系

  • Spark SQL自定义函数实践

  • Spark SQL基本操作与Hive实践

  • Spark SQL转RDD、转DataFrame数据结构实践

  • Spark Streaming实时流处理原理与架构

  • Spark Streaming WordCount入门DStream

  • Spark Streaming DStream数据流的创建

  • Spark Streaming DStream有/无状态转化操作

  • Spark Streaming+Kafka应用场景和代码实践

  • 实践计算引擎Structured Streaming原理与优势

  • Structured Streaming基本编程模型和实践

  • Structured Streaming+Kafka应用场景和代码实践

  • Structured Streaming延迟数据处理Watermark原理应用

分布式实时计算引擎Flink

  • Flink原理与架构设计介绍

  • Flink Standalone模式及集群模式安装部署

  • Flink基本编程模型介绍

  • Flink滑动窗口实践数据统计

  • Flink DataStream API之DataSource和自定义Source

  • Flink DataStream API之Partition操作

  • Flink DataStream API之DataSink和自定义Sink区别

  • Flink DataSet批处理原理

  • Flink Dataset API之DataSource和自定义Source

  • Flink Dataset API之Transformations操作

  • Flink Dataset API之Partition操作

  • Flink Dataset API之DataSink和自定义Sink

  • Flink、Dataset、API之Broadcast&Accumulators&Counters

  • Flink Dataset API之DistributedCache(分布式缓存)

  • Flink状态(State)管理与CheckPoint容错恢复

  • Flink Restart Strategies(重启策略)

  • Flink Watermark与Window结合延迟数据处理实践

  • Flink支持的DataType和序列化

02

算法理论部分

机器学习介绍

  • 自然语言处理原理和常用的应用场景

  • 常用的文本处理jieba中文分词库原理与实践

  • Word2Vec文本向量原理和实践

  • TFIDF、TextRank算法原理和代码实践

  • LCS文本相似度计算原理与应用

  • HMM分词算法原理详解

  • 基于深度学习Dssm文本相似性模型原理与实践

用户画像

  • 用户画像的概念和大厂用户画像的应用前景

  • 用户画像数据层原理和ods层数据开发应用实践

  • 用户画像算法层原理和mds、sds层数据开发应用实践

  • 用户画像业务层原理和rpt层数据开发应用实践

  • 用户画像静态数据和动态数据区别和联系

  • 用户画像标签建模场景和应用实践

  • 用户画像标签衰减系数模型介绍,应用实践

  • 用户画像业务应用场景介绍,人群包开发实践

推荐系统-召回

  • 召回策略在推荐系统中的作用和应用场景

  • 常用的召回算法原理分析和源码解读

  • CB、CF算法原理介绍,实践,数据实践

  • 大数据环境下基于协同过滤的应用和实践

  • 基于深度学习的双塔召回算法原理解析和实践

  • 基于内容召回算法的原理和实践

  • ALS模型算法原理与用户召回实践

  • 召回阶段用户、物品冷启动问题实践解决方案

  • 面试答疑-召回面试问题重现,分析,解答

推荐系统-排序

  • 面试答疑-排序面试问题重现,分析,解答

  • 推荐策略在推荐系统中的作用和应用场景

  • 常用的排序算法原理分析和源码解读

  • 排序阶段经典算法的发展历程

  • CTR预估模型在推荐系统中的主要作用

  • LR逻辑回归算法在推荐系统中的基本实践

  • FM、FFM、DeepFFM排序算法原理和实践应用

  • 排序模型进阶FTRL原理和实践

  • 排序模型进阶Wide&Deep原理和实践

03

附加项LeetCode自我提升

 Top50大数据&算法面试数据结构常考题解析

本视频出品人:毕业于985博士--徐风,目前就职于BAT之一,大数据推荐算法专家,在BAT曾主导和参与30+商业项目。

长按下方二维码 2 秒

立即领取

dda02744010d1a483a8b0588f0ea8e2f.gif

(添加小助理人数较多,请耐心等待)

曾获得1100支参赛团Kaggle竞赛一等奖,在某知名互联网公司担任算法工程师,通过改进竞价算法,使公司净利率提高100%。

有幸当时接触到了这份资源,能有一位这样的学术届与工业届双开花的大佬教程陪伴,完成从学校到职场的过渡。


推荐阅读
  • 什么是大数据lambda架构
    一、什么是Lambda架构Lambda架构由Storm的作者[NathanMarz]提出,根据维基百科的定义,Lambda架构的设计是为了在处理大规模数 ... [详细]
  • HBase在金融大数据迁移中的应用与挑战
    随着最后一台设备的下线,标志着超过10PB的HBase数据迁移项目顺利完成。目前,新的集群已在新机房稳定运行超过两个月,监控数据显示,新集群的查询响应时间显著降低,系统稳定性大幅提升。此外,数据消费的波动也变得更加平滑,整体性能得到了显著优化。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • Hadoop平台警告解决:无法加载本机Hadoop库的全面应对方案
    本文探讨了在Hadoop平台上遇到“无法加载本机Hadoop库”警告的多种解决方案。首先,通过修改日志配置文件来忽略该警告,这一方法被证明是有效的。其次,尝试指定本地库的路径,但未能解决问题。接着,尝试不使用Hadoop本地库,同样没有效果。然后,通过替换现有的Hadoop本地库,成功解决了问题。最后,根据Hadoop的源代码自行编译本地库,也达到了预期的效果。以上方法适用于macOS系统。 ... [详细]
  • 美团优选推荐系统架构师 L7/L8:算法与工程深度融合 ... [详细]
  • 构建高可用性Spark分布式集群:大数据环境下的最佳实践
    在构建高可用性的Spark分布式集群过程中,确保所有节点之间的无密码登录是至关重要的一步。通过在每个节点上生成SSH密钥对(使用 `ssh-keygen -t rsa` 命令并保持默认设置),可以实现这一目标。此外,还需将生成的公钥分发到所有节点的 `~/.ssh/authorized_keys` 文件中,以确保节点间的无缝通信。为了进一步提升集群的稳定性和性能,建议采用负载均衡和故障恢复机制,并定期进行系统监控和维护。 ... [详细]
  • 深入理解Spark框架:RDD核心概念与操作详解
    RDD是Spark框架的核心计算模型,全称为弹性分布式数据集(Resilient Distributed Dataset)。本文详细解析了RDD的基本概念、特性及其在Spark中的关键操作,包括创建、转换和行动操作等,帮助读者深入理解Spark的工作原理和优化策略。通过具体示例和代码片段,进一步阐述了如何高效利用RDD进行大数据处理。 ... [详细]
  • 深入解析十大经典排序算法:动画演示、原理分析与代码实现
    本文深入探讨了十种经典的排序算法,不仅通过动画直观展示了每种算法的运行过程,还详细解析了其背后的原理与机制,并提供了相应的代码实现,帮助读者全面理解和掌握这些算法的核心要点。 ... [详细]
  • 分布式一致性算法:Paxos 的企业级实战
    一、简介首先我们这个平台是ES专题技术的分享平台,众所周知,ES是一个典型的分布式系统。在工作和学习中,我们可能都已经接触和学习过多种不同的分布式系统了,各 ... [详细]
  • 启动activemq_「Java」SpringBoot amp; ActiveMQ
    一、消息队列消息队列中间件是分布式系统中重要的组件,主要解决应用耦合、异步消息、流量削锋等问题,实现高性能、高可用、可伸缩和最终一致性架构, ... [详细]
  • 以Flink为例,消除流处理常见的六大谬见
    以Flink为例,消除流处理常见的六大谬见 ... [详细]
  • Hadoop的文件操作位于包org.apache.hadoop.fs里面,能够进行新建、删除、修改等操作。比较重要的几个类:(1)Configurati ... [详细]
  • 动态壁纸 LiveWallPaper:让您的桌面栩栩如生(第二篇)
    在本文中,我们将继续探讨如何开发动态壁纸 LiveWallPaper,使您的桌面更加生动有趣。作为 2010 年 Google 暑期大学生博客分享大赛 Android 篇的一部分,我们将详细介绍 Ed Burnette 的《Hello, Android》第三版中的相关内容,并分享一些实用的开发技巧和经验。通过本篇文章,您将了解到如何利用 Android SDK 创建引人入胜的动态壁纸,提升用户体验。 ... [详细]
  • 修复一个 Bug 竟耗时两天?真的有那么复杂吗?
    修复一个 Bug 竟然耗费了两天时间?这背后究竟隐藏着怎样的复杂性?本文将深入探讨这个看似简单的 Bug 为何会如此棘手,从代码层面剖析问题根源,并分享解决过程中遇到的技术挑战和心得。 ... [详细]
  • hadoop3.1.2 first programdefault wordcount (Mac)
    hadoop3.1.2安装完成后的第一个实操示例程 ... [详细]
author-avatar
三八xuan_624
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有