热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

关于python爬js加密数据的信息

本文目录一览:1、怎么用python模拟js里JSEncrypt模块的加密方式

本文目录一览:


  • 1、怎么用 python 模拟 js 里 JSEncrypt 模块的加密方式


  • 2、如何用python抓取js生成的数据


  • 3、如何用python爬虫直接获取被js修饰过的网页Elements?


  • 4、python 爬虫,爬不到数据


  • 5、怎么样python爬虫进行此网站爬取


  • 6、如何用python写出爬虫?

怎么用 python 模拟 js 里 JSEncrypt 模块的加密方式

一种是知道加密算法,post加密后的算法,比较麻烦,需要看js。 一种用一些web浏览器内核模拟登录行为,直接输入密码即可!

如何用python抓取js生成的数据

方式大体有那么几种,比如phantomjs,webkit,selenium等。

如果对抓取的性能没有什么要求的话, 尝试一下selenium或者watir吧.

web自动化测试脚本用好了可以做很多事情.

利用你的浏览器执行好js, 然后再从dom里面取数据.

另外一个情况, 如果你知道js是通过ajax或者api取数据的, 直接去抓数据源, 得到的不是json就是xml, 然后处理数据吧

如何用python爬虫直接获取被js修饰过的网页Elements?

对于这种动态加载的网站,建议使用第三方库selenium爬取。

它可以完全模拟浏览器,等待网站全部加载完成后再进行数据的自动获取。

对于主流的ChromeDriver、InternetExplorerDriver、FirefoxDriver、OperaDriver都支持,网站上的元素也支持多种选择器,如class、id、xpath等。

但是用习惯以后,对于这种非纯静态页面,离开selenium感觉就完全不会爬虫了。

python 爬虫,爬不到数据

那数据是动态的,是通过js动态添加上去的,所以获取不到。不仅是通过js动态添加的。而且从服务器获取的数据是加密过的,然后再解密,最后张渲染到页面上。

怎么样python爬虫进行此网站爬取

是加密的,解密方法在JS里面可以弄出来。

首先要AES解密,可以【Python:import Crypto.Cipher.AES】包,解密mode是CFB,seed是"userId:"+uid+":seed"的SHA256值,解密的key是seed[0:24],iv是seed[len(seed)-16:]。

如果没有登录,uid就是用的"anyone",这时候的seed是"61581AF471B166682A37EFE6DD40FE4700EE337FEEEF65E2C8F203FCA312AAAB",也就是key为"61581AF471B166682A37EFE6",iv为"C8F203FCA312AAAB"。

解密后文件是压缩过的,解压即可得到一个JSON。这部分解压我没仔细看他的算法,好像是gzip,直接用【Python:import gzip】解压有点出错,可能没用对或者不是这个算法,你在研究一下。第二种投机的方法就是,可以通过【Python:import execjs】直接调用他的pako.js文件的JS的inflate()函数来解压这块。JS代码混淆后看起来是非常难懂的,使用这种做法可以不用太看懂加密的算法,效率当然写Python实现这个解密算法低1点咯。

最后的JSON再用【Python:import demjson】解析,text的value就是文档。

如何用python写出爬虫?

先检查是否有API

API是网站官方提供的数据接口,如果通过调用API采集数据,则相当于在网站允许的范围内采集,这样既不会有道德法律风险,也没有网站故意设置的障碍;不过调用API接口的访问则处于网站的控制中,网站可以用来收费,可以用来限制访问上限等。整体来看,如果数据采集的需求并不是很独特,那么有API则应优先采用调用API的方式。

数据结构分析和数据存储

爬虫需求要十分清晰,具体表现为需要哪些字段,这些字段可以是网页上现有的,也可以是根据网页上现有的字段进一步计算的,这些字段如何构建表,多张表如何连接等。值得一提的是,确定字段环节,不要只看少量的网页,因为单个网页可以缺少别的同类网页的字段,这既有可能是由于网站的问题,也可能是用户行为的差异,只有多观察一些网页才能综合抽象出具有普适性的关键字段——这并不是几分钟看几个网页就可以决定的简单事情,如果遇上了那种臃肿、混乱的网站,可能坑非常多。

对于大规模爬虫,除了本身要采集的数据外,其他重要的中间数据(比如页面Id或者url)也建议存储下来,这样可以不必每次重新爬取id。

数据库并没有固定的选择,本质仍是将Python里的数据写到库里,可以选择关系型数据库MySQL等,也可以选择非关系型数据库MongoDB等;对于普通的结构化数据一般存在关系型数据库即可。sqlalchemy是一个成熟好用的数据库连接框架,其引擎可与Pandas配套使用,把数据处理和数据存储连接起来,一气呵成。

数据流分析

对于要批量爬取的网页,往上一层,看它的入口在哪里;这个是根据采集范围来确定入口,比如若只想爬一个地区的数据,那从该地区的主页切入即可;但若想爬全国数据,则应更往上一层,从全国的入口切入。一般的网站网页都以树状结构为主,找到切入点作为根节点一层层往里进入即可。

值得注意的一点是,一般网站都不会直接把全量的数据做成列表给你一页页往下翻直到遍历完数据,比如链家上面很清楚地写着有24587套二手房,但是它只给100页,每页30个,如果直接这么切入只能访问3000个,远远低于真实数据量;因此先切片,再整合的数据思维可以获得更大的数据量。显然100页是系统设定,只要超过300个就只显示100页,因此可以通过其他的筛选条件不断细分,只到筛选结果小于等于300页就表示该条件下没有缺漏;最后把各种条件下的筛选结果集合在一起,就能够尽可能地还原真实数据量。

明确了大规模爬虫的数据流动机制,下一步就是针对单个网页进行解析,然后把这个模式复制到整体。对于单个网页,采用抓包工具可以查看它的请求方式,是get还是post,有没有提交表单,欲采集的数据是写入源代码里还是通过AJAX调用JSON数据。

同样的道理,不能只看一个页面,要观察多个页面,因为批量爬虫要弄清这些大量页面url以及参数的规律,以便可以自动构造;有的网站的url以及关键参数是加密的,这样就悲剧了,不能靠着明显的逻辑直接构造,这种情况下要批量爬虫,要么找到它加密的js代码,在爬虫代码上加入从明文到密码的加密过程;要么采用下文所述的模拟浏览器的方式。

数据采集

之前用R做爬虫,不要笑,R的确可以做爬虫工作;但在爬虫方面,Python显然优势更明显,受众更广,这得益于其成熟的爬虫框架,以及其他的在计算机系统上更好的性能。scrapy是一个成熟的爬虫框架,直接往里套用就好,比较适合新手学习;requests是一个比原生的urllib包更简洁强大的包,适合作定制化的爬虫功能。requests主要提供一个基本访问功能,把网页的源代码给download下来。一般而言,只要加上跟浏览器同样的Requests Headers参数,就可以正常访问,status_code为200,并成功得到网页源代码;但是也有某些反爬虫较为严格的网站,这么直接访问会被禁止;或者说status为200也不会返回正常的网页源码,而是要求写验证码的js脚本等。

下载到了源码之后,如果数据就在源码中,这种情况是最简单的,这就表示已经成功获取到了数据,剩下的无非就是数据提取、清洗、入库。但若网页上有,然而源代码里没有的,就表示数据写在其他地方,一般而言是通过AJAX异步加载JSON数据,从XHR中找即可找到;如果这样还找不到,那就需要去解析js脚本了。

解析工具

源码下载后,就是解析数据了,常用的有两种方法,一种是用BeautifulSoup对树状HTML进行解析,另一种是通过正则表达式从文本中抽取数据。

BeautifulSoup比较简单,支持Xpath和CSSSelector两种途径,而且像Chrome这类浏览器一般都已经把各个结点的Xpath或者CSSSelector标记好了,直接复制即可。以CSSSelector为例,可以选择tag、id、class等多种方式进行定位选择,如果有id建议选id,因为根据HTML语法,一个id只能绑定一个标签。

正则表达式很强大,但构造起来有点复杂,需要专门去学习。因为下载下来的源码格式就是字符串,所以正则表达式可以大显身手,而且处理速度很快。

对于HTML结构固定,即同样的字段处tag、id和class名称都相同,采用BeautifulSoup解析是一种简单高效的方案,但有的网站混乱,同样的数据在不同页面间HTML结构不同,这种情况下BeautifulSoup就不太好使;如果数据本身格式固定,则用正则表达式更方便。比如以下的例子,这两个都是深圳地区某个地方的经度,但一个页面的class是long,一个页面的class是longitude,根据class来选择就没办法同时满足2个,但只要注意到深圳地区的经度都是介于113到114之间的浮点数,就可以通过正则表达式"11[3-4].\d+"来使两个都满足。

数据整理

一般而言,爬下来的原始数据都不是清洁的,所以在入库前要先整理;由于大部分都是字符串,所以主要也就是字符串的处理方式了。

字符串自带的方法可以满足大部分简单的处理需求,比如strip可以去掉首尾不需要的字符或者换行符等,replace可以将指定部分替换成需要的部分,split可以在指定部分分割然后截取一部分。

如果字符串处理的需求太复杂以致常规的字符串处理方法不好解决,那就要请出正则表达式这个大杀器。

Pandas是Python中常用的数据处理模块,虽然作为一个从R转过来的人一直觉得这个模仿R的包实在是太难用了。Pandas不仅可以进行向量化处理、筛选、分组、计算,还能够整合成DataFrame,将采集的数据整合成一张表,呈现最终的存储效果。

写入数据库

如果只是中小规模的爬虫,可以把最后的爬虫结果汇合成一张表,最后导出成一张表格以便后续使用;但对于表数量多、单张表容量大的大规模爬虫,再导出成一堆零散的表就不合适了,肯定还是要放在数据库中,既方便存储,也方便进一步整理。

写入数据库有两种方法,一种是通过Pandas的DataFrame自带的to_sql方法,好处是自动建表,对于对表结构没有严格要求的情况下可以采用这种方式,不过值得一提的是,如果是多行的DataFrame可以直接插入不加索引,但若只有一行就要加索引否则报错,虽然这个认为不太合理;另一种是利用数据库引擎来执行SQL语句,这种情况下要先自己建表,虽然多了一步,但是表结构完全是自己控制之下。Pandas与SQL都可以用来建表、整理数据,结合起来使用效率更高。


推荐阅读
  • 本文详细解析了使用C++实现的键盘输入记录程序的源代码,该程序在Windows应用程序开发中具有很高的实用价值。键盘记录功能不仅在远程控制软件中广泛应用,还为开发者提供了强大的调试和监控工具。通过具体实例,本文深入探讨了C++键盘记录程序的设计与实现,适合需要相关技术的开发者参考。 ... [详细]
  • 本文详细介绍了如何使用OpenSSL自建CA证书的步骤,包括准备工作、生成CA证书、生成服务器待签证书以及证书签名等过程。 ... [详细]
  • 本文详细介绍了在 CentOS 7 系统中配置 fstab 文件以实现开机自动挂载 NFS 共享目录的方法,并解决了常见的配置失败问题。 ... [详细]
  • 本文详细介绍了在 Ubuntu 系统上搭建 Hadoop 集群时遇到的 SSH 密钥认证问题及其解决方案。通过本文,读者可以了解如何在多台虚拟机之间实现无密码 SSH 登录,从而顺利启动 Hadoop 集群。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • MicrosoftDeploymentToolkit2010部署培训实验手册V1.0目录实验环境说明3实验环境虚拟机使用信息3注意:4实验手册正文说 ... [详细]
  • 网站访问全流程解析
    本文详细介绍了从用户在浏览器中输入一个域名(如www.yy.com)到页面完全展示的整个过程,包括DNS解析、TCP连接、请求响应等多个步骤。 ... [详细]
  • 微信公众号推送模板40036问题
    返回码错误码描述说明40001invalidcredential不合法的调用凭证40002invalidgrant_type不合法的grant_type40003invalidop ... [详细]
  • 本文介绍如何使用 Python 的 DOM 和 SAX 方法解析 XML 文件,并通过示例展示了如何动态创建数据库表和处理大量数据的实时插入。 ... [详细]
  • 开机自启动的几种方式
    0x01快速自启动目录快速启动目录自启动方式源于Windows中的一个目录,这个目录一般叫启动或者Startup。位于该目录下的PE文件会在开机后进行自启动 ... [详细]
  • 在处理大规模数据数组时,优化分页组件对于提高页面加载速度和用户体验至关重要。本文探讨了如何通过高效的分页策略,减少数据渲染的负担,提升应用性能。具体方法包括懒加载、虚拟滚动和数据预取等技术,这些技术能够显著降低内存占用和提升响应速度。通过实际案例分析,展示了这些优化措施的有效性和可行性。 ... [详细]
  • 为了确保iOS应用能够安全地访问网站数据,本文介绍了如何在Nginx服务器上轻松配置CertBot以实现SSL证书的自动化管理。通过这一过程,可以确保应用始终使用HTTPS协议,从而提升数据传输的安全性和可靠性。文章详细阐述了配置步骤和常见问题的解决方法,帮助读者快速上手并成功部署SSL证书。 ... [详细]
  • V8不仅是一款著名的八缸发动机,广泛应用于道奇Charger、宾利Continental GT和BossHoss摩托车中。自2008年以来,作为Chromium项目的一部分,V8 JavaScript引擎在性能优化和技术创新方面取得了显著进展。该引擎通过先进的编译技术和高效的垃圾回收机制,显著提升了JavaScript的执行效率,为现代Web应用提供了强大的支持。持续的优化和创新使得V8在处理复杂计算和大规模数据时表现更加出色,成为众多开发者和企业的首选。 ... [详细]
  • Web开发框架概览:Java与JavaScript技术及框架综述
    Web开发涉及服务器端和客户端的协同工作。在服务器端,Java是一种优秀的编程语言,适用于构建各种功能模块,如通过Servlet实现特定服务。客户端则主要依赖HTML进行内容展示,同时借助JavaScript增强交互性和动态效果。此外,现代Web开发还广泛使用各种框架和库,如Spring Boot、React和Vue.js,以提高开发效率和应用性能。 ... [详细]
  • 为开发者提供了一系列实用的参考网站和资源链接,包括HTML速查手册( 和 ),帮助开发者快速查找和学习相关技术知识。此外,还涵盖了其他重要的开发工具和文档,为编程工作提供全面支持。 ... [详细]
author-avatar
甜甜天蚕宝_431
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有