热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

关于python调试大法的信息

本文目录一览:1、pdbpython调试怎么用

本文目录一览:


  • 1、pdb python 调试 怎么用


  • 2、怎么用python的pdb模块进行调试?


  • 3、python如何一步步调试


  • 4、vscode如何调试python


  • 5、后端编程Python3-调试、测试和性能剖析(下)

pdb python 调试 怎么用

 本文章讲述了如何用pdb进行python调试讲解.

当手边

没有ide,面对着python调试犯愁时,你就可以参考下本文;(pdb 命令调试)

和 (pdb)help

用pdb进行python调试,用法基本和gdb差不多,

先看一个简单的例子:

epdb1.py .# epdb1.py -- experiment with the Python debugger, pdb

a = "aaa"

b = "bbb"

c = "ccc"

final = a + b + c

print final

比如要对这个程序进行调试:

1:在文件前面加上这一句,引入调试的模块。

import pdb

2:在要开始调试的一行加上pdb.set_trace()文件变成:

# epdb1.py -- experiment with the Python debugger, pdb

import pdb

a = "aaa"

pdb.set_trace()

b = "bbb"

c = "ccc"

final = a + b + c

print final 可以运行这个程序,到断点出会停下来,和gdb类似,

可以执行命令:

直接回车是重复前一条命令!

p(print) 查看一个变量值

n(next) 下一步

s(step) 单步,可进入函数

c(continue)继续前进

l(list)看源代码

用pdb调试有多种方式可选:

1.命令行启动目标程序,加上-m参数,这样调用myscript.py的话断点就是程序的执行第一行之前

python -m pdb myscript.py

2. 在Python交互环境中启用调试

import pdb

import mymodule

pdb.run('mymodule.test()')

3.比较常用的,就是在程序中间插入一段程序,相对于在一般ide里面打上断点然后启动debug,不过这种方式是hardcode的 if __name__ == "__main__" :

a = 1

importpdb

pdb .set_trace()

b = 2

c = a + b

print( c)

然后正常运行脚本,到了pdb.set_trace()那就会定下来,就可以看到调试的提示符(Pdb)了

常用的调试命令 h(elp),会打印当前版本Pdb可用的命令,如果要查询某个命令,可以输入 h [command],例如:"h l" - 查看list命令

l(ist),可以列出当前将要运行的代码块

(Pdb) l

497 pdb.set_trace()

498 base_data = {}

499 new_data = {}

500 try:

501 execfile(base_file_name,{},base_data)

502 - execfile(new_file_name,{},new_data)

503 except:

504 logger.writeLog("error! load result log error!")

505 print "load cmp logs error!"

506 raise Exception, "load cmp logs error!"

507断点设置

(Pdb)b10 #断点设置在本py的第10行

或(Pdb)bots.py:20 #断点设置到 ots.py第20行

删除断点(Pdb)b #查看断点编号

(Pdb)cl 2 #删除第2个断点

运行

(Pdb)n #单步运行

(Pdb)s #细点运行 也就是会下到,方法

(Pdb)c #跳到下个断点

查看

(Pdb)p param #查看当前 变量值

(Pdb)l #查看运行到某处代码

(Pdb)a #查看全部栈内变量 b(reak), 设置断点,例如 "b 77″,就是在当前脚本的77行打上断点,还能输入函数名作为参数,断点就打到具体的函数入口,如果只敲b,会显示现有的全部断点

(Pdb) b 504

Breakpoint 4 at /home/jchen/regression/regressionLogCMP.py:504 condition bpnumber [condition],设置条件断点,下面语句就是对第4个断点加上条件"a==3"

(Pdb) condition 4 a==3

(Pdb) b

num Type Disp Enb Where

4 breakpoint keep yes at /home/jchen/regression/regressionLogCMP.py:504

stop only if a==3 cl(ear),如果后面带有参数,就是清除指定的断点(我在Python2.4上从来没成功过!!!);如果不带参数就是清除所有的断点

(Pdb) cl

clear all breaks? y disable/enable,禁用/激活断点

(Pdb) disable 3

(Pdb) b

num Type Disp Enb Where

3 breakpoint keep no at /home/jchen/regression/regressionLogCMP.py:505 n(ext),让程序运行下一行,如果当前语句有一个函数调用,用n是不会进入被调用的函数体中的

s(tep),跟n相似,但是如果当前有一个函数调用,那么s会进入被调用的函数体中

c(ont(inue)),让程序正常运行,直到遇到断点

j(ump),让程序跳转到指定的行数

(Pdb) j 497

/home/jchen/regression/regressionLogCMP.py(497)com pareLog()

- pdb.set_trace() a(rgs),打印当前函数的参数

(Pdb) a

_logger =

_base = ./base/MRM-8137.log

_new = ./new/MRM-8137.log

_caseid = 5550001

_toStepnum = 10

_cmpMap = {'_bcmpbinarylog': 'True', '_bcmpLog': 'True', '_bcmpresp': 'True'} p,最有用的命令之一,打印某个变量

(Pdb) p _new

u'./new/MRM-8137.log' !,感叹号后面跟着语句,可以直接改变某个变量

q(uit),退出调试

==============================================================================================

在python中使用pdb模块可以进行调试

import pdb

pdb.set_trace()

也可以使用python -m pdb mysqcript.py这样的方式

(Pdb) 会自动停在第一行,等待调试,这时你可以看看 帮助

(Pdb) h

说明下这几个关键 命令

断点设置

(Pdb)b 10 #断点设置在本py的第10行

或(Pdb)b ots.py:20 #断点设置到 ots.py第20行

删除断点(Pdb)b #查看断点编号

(Pdb)cl 2 #删除第2个断点

运行

(Pdb)n #单步运行

(Pdb)s #细点运行 也就是会下到,方法

(Pdb)c #跳到下个断点

查看

(Pdb)p param #查看当前 变量值

(Pdb)l #查看运行到某处代码

(Pdb)a #查看全部栈内变量

(Pdb)w 列出目前call stack 中的所在层。

(Pdb)d 在call stack中往下移一层

(Pdb)u 在call stack中往上移一层。如果在上移一层之后按下 n ,则会在上移之后的一层执行下一个叙述,之前的 function call 就自动返回。

(Pdb)cl 清除指定的断点。如果没有带参数,则清除所有断点。

(Pdb)disable 取消所有断点的功能,但仍然保留这些断点。

(Pdb)enable 恢复断点的功能。

(Pdb)ignore 设定断点的忽略次数。如果没指定 count,其初始 为 0。当 count 为 0 时,断点会正常动作。若有指定 count,则每次执行到该中断, count 就少 1,直到 count 数为 0。

(Pdb)condition bpnumber [condition]

(Pdb)j(ump) lineno. 跳到某行执行。只有在 call stack 的最底部才能作用。

(Pdb)l 列出目前所在档案中的位置。连续地 l 命令会一直列到档案结尾,可以使用指定行数或范围来打印。

(Pdb)pp 和 p 命令类似,但是使用 pprint module(没用过 pprint,详情请参考 Python Library Reference)。

(Pdb)alias 以一个"别名"代替"一群除错命令",有点类似 c/c 的 macro(详情请参考 Python Library Reference)。

(Pdb)unalias 取消某个 alias。

(Pdb)[!]statement 在目前的环境(context)中执行叙述。

怎么用python的pdb模块进行调试?

工具/材料

电脑,python环境

01

首先打开电脑后,打开终端,我这里以调试debug.py文件做说明,简单介绍python的pdb调试。为了演示,先用cat命令查看一下debug.py的内容。

02

我这里用的python3的环境,在终端里输入如图显示python3 -m pdb debug.py命令。就是就是用python的pdb模块调试debug.py文件代码。

03

进入调试后,在终端里输入小写字母l,就是英文单词list的缩写,意思就是列出代码内容。如果显示。

04

在终端里输入小写字母n,就是英文单词next的缩写,意思就是执行下一行代码。

05

在终端里输入小写字母p x,p就是英文单词print的缩写,意思就是打印变量x的值。

06

在终端里输入小写字母s,s就是英文单词s的缩写,进入函数内部调试。

07

在终端里输入小写字母a,a就是英文单词arguments(参数)的缩写,会打印显示函数所有变量的值。

08

在终端里输入小写字母c,就是英文单词continue的缩写,意思就是继续执行代码一直结束,然后重新进入调试。

09

在终端里输入小写字母b和阿拉伯数字6,b就是英文单词break的缩写,意思就是在第6行代码打个断点。

10

在终端里输入小写字母q,q就是英文单词quit的缩写,意思就是退出调试。

python如何一步步调试

装个Pycharm

1 添加断点

2 Debug下运行代码:

3 F8:进行下一步操作

F7 :跳入下一个方法中

vscode如何调试python

初始化配置

配置在调试会话期间驱动VS Code的行为。 配置在launch.json文件中定义,该文件存储在工作区的.vscode文件夹中。

注意为了更改调试配置,您的代码必须存储在一个文件夹中。

要使用Python配置生成launch.json文件,请执行以下步骤:

1.选择设置按钮(在上图中圈出)或使用Debug Open configurations菜单命令。

2.将从命令选项板打开配置菜单,允许您为打开的文件选择所需的调试配置类型。 现在,在出现的Select a debug configuration菜单中,选择Python File。

注意通过调试面板启动调试会话,F5或调试启动调试,如果不存在配置,也会打开调试配置菜单。

然后,Python扩展创建并打开一个launch.json文件,该文件包含基于您之前选择的预定义配置,在本例中为Python文件。 您可以修改配置(例如,添加参数),还可以添加自定义配置。

更多的配置

默认情况下,VS Code仅显示Python扩展提供的最常见配置。 您可以使用列表和launch.json编辑器中显示的“添加配置”命令选择要包含在launch.json中的其他配置。 当您使用该命令时,VS Code会提示您所有可用配置的列表(请务必向下滚动以查看所有Python选项):

选择Node.js:Gulp任务会产生以下结果:

在调试过程中,状态栏显示左下方的当前配置; 右边是当前的调试解释器。 选择配置会显示一个列表,您可以从中选择不同的配置:

默认情况下,调试器使用与VS Code的其他功能相同的python.pythonPath工作空间设置。 要使用不同的解释器进行特定的调试,请在launch.json中为pythonPath设置适用的调试器配置,如下一节所述。 或者,选择状态栏上的命名解释器以选择另一个更新python.pythonPath。

设置配置选项

首次创建launch.json时,有两种标准配置在编辑器中的集成终端(VS代码内部)或外部终端(VS代码外部)中运行活动文件:

具体设置将在以下部分中介绍。 您还可以添加标准配置中未包含的其他设置,例如args。

name

提供VS Code下拉列表中显示的调试配置的名称。

type

标识要使用的调试器类型; 用于Python代码。

request

指定调试的模式

launch:指定调试起始文件program

attach:指定调试挂载进程

program

提供python程序的入口模块(启动文件)的完全限定路径。 值:${file}, 常用于默认配置,使用编辑器中当前活动的文件。 通过指定特定的启动文件,无论打开哪个文件,您始终可以确保使用相同的入口点启动程序。 例如:

"program": "/Users/Me/Projects/PokemonGo-Bot/pokemongo_bot/event_handlers/__init__.py",

您还可以依赖工作区根目录中的相对路径。 例如,如果是根“/Users/Me/Projects/PokemonGo-Bot”,你可以像这样使用

"program": "${workspaceFolder}/pokemongo_bot/event_handlers/__init__.py",

pythonPath

指向用于调试的Python解释器,它可以是包含Python解释器的文件夹。 该值可以使用变量${workspaceFolder}和${workspaceFolder}/.venv如果未指定,则此设置默认为在中标识的解释器python.pythonPath,

或者,您可以使用在每个平台上定义的自定义环境变量来包含要使用的Python解释器的完整路径,这样就不需要其他文件夹路径。

args

指定传递给Python程序的参数。 由空格分隔的参数字符串的每个元素都应包含在引号内,例如:

"args": ["--quiet", "--norepeat", "--port", "1593"],

stopOnEntry

设置为true的时候,打破正在调试的程序的第一行的调试器。 如果省略(默认值)或设置为false,调试器将程序运行到第一个断点。

console

指定程序输出的显示方式。

cwd

指定调试器的当前工作目录,该目录是代码中使用的任何相对路径的基本文件夹。 如果省略,则默认为${workspaceFolder}vscode的工作目录,作为一个例子${workspaceFolder}包含了python代码文件夹或者文件,包含了app.py

配置如下:

redirectOutput

省略或设置为时true(默认值),使调试器将程序的所有输出打印到VS Code调试输出窗口。 如果设置为false,程序输出不会显示在调试器输出窗口中。

使用时通常禁用此选项

"console": "integratedTerminal"

"console": "externalTerminal"

因为不需要在调试控制台中复制输出。

justMyCode

省略或设置为true(默认值),仅将调试限制为用户编写的代码。 调成false还可以调试标准库函数。

django

可以调试django框架

env

为调试器进程设置可选的环境变量,而不是调试器始终继承的系统环境变量。

envFile

包含环境变量定义的文件的可选路径。 请参阅配置Python环境 - 环境变量定义文件。

在代码中调用断点

在Python代码中,您可以调用断点 在调试会话期间要暂停调试器的任何位置。

断点验证

Python扩展自动检测在非可执行行上设置的断点,例如 通过 语句或多行语句的中间。 在这种情况下,运行调试器会将断点移动到最近的有效行,以确保代码执行在此时停止。

附加到本地脚本

在某些情况下,您需要调试由另一个进程在本地调用的Python脚本。 例如,您可能正在调试为特定处理作业运行不同Python脚本的Web服务器。 在这种情况下,您需要在启动后将VS Code调试器附加到脚本:

1.运行VS Code,打开包含脚本的文件夹或工作区,然后创建一个launch.json 对于该工作空间,如果尚不存在。

2.在脚本代码中,添加以下内容并保存文件:

3.使用终端打开终端:创建新的集成终端,激活脚本的选定环境。在终端中,使用python -m pip install --upgrade ptvsd安装ptvsd软件包。

4.在终端中,使用脚本启动Python,例如python3 myscript.py。 您应该看到代码中包含的“等待调试器附加”消息,并且脚本在ptvsd.wait_for_attach()调用时停止。

5.切换到Debug视图,从Debugger下拉列表中选择Python:Attach,然后启动调试器。

python学习网,免费的在线学习python平台,欢迎关注!

后端编程Python3-调试、测试和性能剖析(下)

单元测试(Unit Testing)

为程序编写测试——如果做的到位——有助于减少bug的出现,并可以提高我们对程序按预期目标运行的信心。通常,测试并不能保证正确性,因为对大多数程序而言, 可能的输入范围以及可能的计算范围是如此之大,只有其中最小的一部分能被实际地进 行测试。尽管如此,通过仔细地选择测试的方法和目标,可以提高代码的质量。

大量不同类型的测试都可以进行,比如可用性测试、功能测试以及整合测试等。这里, 我们只讲单元测试一对单独的函数、类与方法进行测试,确保其符合预期的行为。

TDD的一个关键点是,当我们想添加一个功能时——比如为类添加一个方法—— 我们首次为其编写一个测试用例。当然,测试将失败,因为我们还没有实际编写该方法。现在,我们编写该方法,一旦方法通过了测试,就可以返回所有测试,确保我们新添加的代码没有任何预期外的副作用。一旦所有测试运行完毕(包括我们为新功能编写的测试),就可以对我们的代码进行检查,并有理有据地相信程序行为符合我们的期望——当然,前提是我们的测试是适当的。

比如,我们编写了一个函数,该函数在特定的索引位置插入一个字符串,可以像下面这样开始我们的TDD:

def insert_at(string, position, insert):

"""Returns a copy of string with insert inserted at the position

string = "ABCDE"

result =[]

for i in range(-2, len(string) + 2):

... result.append(insert_at(string, i,“-”))

result[:5]

['ABC-DE', 'ABCD-E', '-ABCDE','A-BCDE', 'AB-CDE']

result[5:]

['ABC-DE', 'ABCD-E', 'ABCDE-', 'ABCDE-']

"""

return string

对不返回任何参数的函数或方法(通常返回None),我们通常赋予其由pass构成的一个suite,对那些返回值被试用的,我们或者返回一个常数(比如0),或者某个不变的参数——这也是我们这里所做的。(在更复杂的情况下,返回fake对象可能更有用一一对这样的类,提供mock对象的第三方模块是可用的。)

运行doctest时会失败,并列出每个预期内的字符串('ABCD-EF'、'ABCDE-F' 等),及其实际获取的字符串(所有的都是'ABCD-EF')。一旦确定doctest是充分的和正确的,就可以编写该函数的主体部分,在本例中只是简单的return string[:position] + insert+string[position:]。(如果我们编写的是 return string[:position] + insert,之后复制 string [:position]并将其粘贴在末尾以便减少一些输入操作,那么doctest会立即提示错误。)

Python的标准库提供了两个单元测试模块,一个是doctest,这里和前面都简单地提到过,另一个是unittest。此外,还有一些可用于Python的第三方测试工具。其中最著名的两个是nose (code.google.com/p/python-nose)与py.test (codespeak.net/py/dist/test/test.html), nose 致力于提供比标准的unittest 模块更广泛的功能,同时保持与该模块的兼容性,py.test则采用了与unittest有些不同的方法,试图尽可能消除样板测试代码。这两个第三方模块都支持测试发现,因此没必要写一个总体的测试程序——因为模块将自己搜索测试程序。这使得测试整个代码树或某一部分 (比如那些已经起作用的模块)变得很容易。那些对测试严重关切的人,在决定使用哪个测试工具之前,对这两个(以及任何其他有吸引力的)第三方模块进行研究都是值 得的。

创建doctest是直截了当的:我们在模块中编写测试、函数、类与方法的docstrings。 对于模块,我们简单地在末尾添加了 3行:

if __name__ =="__main__":

import doctest

doctest.testmod()

在程序内部使用doctest也是可能的。比如,blocks.py程序(其模块在后面)有自己函数的doctest,但以如下代码结尾:

if __name__== "__main__":

main()

这里简单地调用了程序的main()函数,并且没有执行程序的doctest。要实验程序的 doctest,有两种方法。一种是导入doctest模块,之后运行程序---比如,在控制台中输 入 python3 -m doctest blocks.py (在 Wndows 平台上,使用类似于 C:Python3 lpython.exe 这样的形式替代python3)。如果所有测试运行良好,就没有输出,因此,我们可能宁愿执行python3-m doctest blocks.py-v,因为这会列出每个执行的doctest,并在最后给出结果摘要。

另一种执行doctest的方法是使用unittest模块创建单独的测试程序。在概念上, unittest模块是根据Java的JUnit单元测试库进行建模的,并用于创建包含测试用例的测试套件。unittest模块可以基于doctests创建测试用例,而不需要知道程序或模块包含的任何事物——只要知道其包含doctest即可。因此,为给blocks.py程序制作一个测试套件,我们可以创建如下的简单程序(将其称为test_blocks.py):

import doctest

import unittest

import blocks

suite = unittest.TestSuite()

suite.addTest(doctest.DocTestSuite(blocks))

runner = unittest.TextTestRunner()

print(runner.run(suite))

注意,如果釆用这种方法,程序的名称上会有一个隐含的约束:程序名必须是有效的模块名。因此,名为convert-incidents.py的程序的测试不能写成这样。因为import convert-incidents不是有效的,在Python标识符中,连接符是无效的(避开这一约束是可能的,但最简单的解决方案是使用总是有效模块名的程序文件名,比如,使用下划线替换连接符)。这里展示的结构(创建一个测试套件,添加一个或多个测试用例或测试套件,运行总体的测试套件,输出结果)是典型的机遇unittest的测试。运行时,这一特定实例产生如下结果:

...

.............................................................................................................

Ran 3 tests in 0.244s

OK

每次执行一个测试用例时,都会输出一个句点(因此上面的输出最前面有3个句点),之后是一行连接符,再之后是测试摘要(如果有任何一个测试失败,就会有更多的输出信息)。

如果我们尝试将测试分离开(典型情况下是要测试的每个程序和模块都有一个测试用例),就不要再使用doctests,而是直接使用unittest模块的功能——尤其是我们习惯于使用JUnit方法进行测试时ounittest模块会将测试分离于代码——对大型项目(测试编写人员与开发人员可能不一致)而言,这种方法特别有用。此外,unittest单元测试编写为独立的Python模块,因此,不会像在docstring内部编写测试用例时受到兼容性和明智性的限制。

unittest模块定义了 4个关键概念。测试夹具是一个用于描述创建测试(以及用完之后将其清理)所必需的代码的术语,典型实例是创建测试所用的一个输入文件,最后删除输入文件与结果输出文件。测试套件是一组测试用例的组合。测试用例是测试的基本单元—我们很快就会看到实例。测试运行者是执行一个或多个测试套件的对象。

典型情况下,测试套件是通过创建unittest.TestCase的子类实现的,其中每个名称 以“test”开头的方法都是一个测试用例。如果我们需要完成任何创建操作,就可以在一个名为setUp()的方法中实现;类似地,对任何清理操作,也可以实现一个名为 tearDown()的方法。在测试内部,有大量可供我们使用的unittest.TestCase方法,包括 assertTrue()、assertEqual()、assertAlmostEqual()(对于测试浮点数很有用)、assertRaises() 以及更多,还包括很多对应的逆方法,比如assertFalse()、assertNotEqual()、failIfEqual()、 failUnlessEqual ()等。

unittest模块进行了很好的归档,并且提供了大量功能,但在这里我们只是通过一 个非常简单的测试套件来感受一下该模块的使用。这里将要使用的实例,该练习要求创建一个Atomic模块,该模块可以用作一 个上下文管理器,以确保或者所有改变都应用于某个列表、集合或字典,或者所有改变都不应用。作为解决方案提供的Atomic.py模块使用30行代码来实现Atomic类, 并提供了 100行左右的模块doctest。这里,我们将创建test_Atomic.py模块,并使用 unittest测试替换doctest,以便可以删除doctest。

在编写测试模块之前,我们需要思考都需要哪些测试。我们需要测试3种不同的数据类型:列表、集合与字典。对于列表,需要测试的是插入项、删除项或修改项的值。对于集合,我们必须测试向其中添加或删除一个项。对于字典,我们必须测试的是插入一个项、修改一个项的值、删除一个项。此外,还必须要测试的是在失败的情况下,不会有任何改变实际生效。

结构上看,测试不同数据类型实质上是一样的,因此,我们将只为测试列表编写测试用例,而将其他的留作练习。test_Atomic.py模块必须导入unittest模块与要进行测试的Atomic模块。

创建unittest文件时,我们通常创建的是模块而非程序。在每个模块内部,我们定义一个或多个unittest.TestCase子类。比如,test_Atomic.py模块中仅一个单独的 unittest-TestCase子类,也就是TestAtomic (稍后将对其进行讲解),并以如下两行结束:

if name == "__main__":

unittest.main()

这两行使得该模块可以单独运行。当然,该模块也可以被导入并从其他测试程序中运行——如果这只是多个测试套件中的一个,这一点是有意义的。

如果想要从其他测试程序中运行test_Atomic.py模块,那么可以编写一个与此类似的程序。我们习惯于使用unittest模块执行doctests,比如:

import unittest

import test_Atomic

suite = unittest.TestLoader().loadTestsFromTestCase(test_Atomic.TestAtomic)

runner = unittest.TextTestRunner()

pnnt(runner.run(suite))

这里,我们已经创建了一个单独的套件,这是通过让unittest模块读取test_Atomic 模块实现的,并且使用其每一个test*()方法(本实例中是test_list_success()、test_list_fail(),稍后很快就会看到)作为测试用例。

我们现在将查看TestAtomic类的实现。对通常的子类(不包括unittest.TestCase 子类),不怎么常见的是,没有必要实现初始化程序。在这一案例中,我们将需要建立 一个方法,但不需要清理方法,并且我们将实现两个测试用例。

def setUp(self):

self.original_list = list(range(10))

我们已经使用了 unittest.TestCase.setUp()方法来创建单独的测试数据片段。

def test_list_succeed(self):

items = self.original_list[:]

with Atomic.Atomic(items) as atomic:

atomic.append(1999)

atomic.insert(2, -915)

del atomic[5]

atomic[4]= -782

atomic.insert(0, -9)

self.assertEqual(items,

[-9, 0, 1, -915, 2, -782, 5, 6, 7, 8, 9, 1999])

def test_list_fail(self):

items = self.original_list[:]

with self.assertRaises(AttributeError):

with Atomic.Atomic(items) as atomic:

atomic.append(1999)

atomic.insert(2, -915)

del atomic[5]

atomic[4] = -782

atomic.poop() # Typo

self.assertListEqual(items, self.original_list)

这里,我们直接在测试方法中编写了测试代码,而不需要一个内部函数,也不再使用unittest.TestCase.assertRaised()作为上下文管理器(期望代码产生AttributeError)。 最后我们也使用了 Python 3.1 的 unittest.TestCase.assertListEqual()方法。

正如我们已经看到的,Python的测试模块易于使用,并且极为有用,在我们使用 TDD的情况下更是如此。它们还有比这里展示的要多得多的大量功能与特征——比如,跳过测试的能力,这有助于理解平台差别——并且这些都有很好的文档支持。缺失的一个功能——但nose与py.test提供了——是测试发现,尽管这一特征被期望在后续的Python版本(或许与Python 3.2—起)中出现。

性能剖析(Profiling)

如果程序运行很慢,或者消耗了比预期内要多得多的内存,那么问题通常是选择的算法或数据结构不合适,或者是以低效的方式进行实现。不管问题的原因是什么, 最好的方法都是准确地找到问题发生的地方,而不只是检査代码并试图对其进行优化。 随机优化会导致引入bug,或者对程序中本来对程序整体性能并没有实际影响的部分进行提速,而这并非解释器耗费大部分时间的地方。

在深入讨论profiling之前,注意一些易于学习和使用的Python程序设计习惯是有意义的,并且对提高程序性能不无裨益。这些技术都不是特定于某个Python版本的, 而是合理的Python程序设计风格。第一,在需要只读序列时,最好使用元组而非列表; 第二,使用生成器,而不是创建大的元组和列表并在其上进行迭代处理;第三,尽量使用Python内置的数据结构 dicts、lists、tuples 而不实现自己的自定义结构,因为内置的数据结构都是经过了高度优化的;第四,从小字符串中产生大字符串时, 不要对小字符串进行连接,而是在列表中累积,最后将字符串列表结合成为一个单独的字符串;第五,也是最后一点,如果某个对象(包括函数或方法)需要多次使用属性进行访问(比如访问模块中的某个函数),或从某个数据结构中进行访问,那么较好的做法是创建并使用一个局部变量来访问该对象,以便提供更快的访问速度。

Python标准库提供了两个特别有用的模块,可以辅助调査代码的性能问题。一个是timeit模块——该模块可用于对一小段Python代码进行计时,并可用于诸如对两个或多个特定函数或方法的性能进行比较等场合。另一个是cProfile模块,可用于profile 程序的性能——该模块对调用计数与次数进行了详细分解,以便发现性能瓶颈所在。

为了解timeit模块,我们将查看一些小实例。假定有3个函数function_a()、 function_b()、function_c(), 3个函数执行同样的计算,但分别使用不同的算法。如果将这些函数放于同一个模块中(或分别导入),就可以使用timeit模块对其进行运行和比较。下面给出的是模块最后使用的代码:

if __name__ == "__main__":

repeats = 1000

for function in ("function_a", "function_b", "function_c"):

t = timeit.Timer("{0}(X, Y)".format(function),"from __main__ import {0}, X, Y".format(function))

sec = t.timeit(repeats) / repeats

print("{function}() {sec:.6f} sec".format(**locals()))

赋予timeit.Timer()构造子的第一个参数是我们想要执行并计时的代码,其形式是字符串。这里,该字符串是“function_a(X,Y)”;第二个参数是可选的,还是一个待执行的字符串,这一次是在待计时的代码之前,以便提供一些建立工作。这里,我们从 __main__ (即this)模块导入了待测试的函数,还有两个作为输入数据传入的变量(X 与Y),这两个变量在该模块中是作为全局变量提供的。我们也可以很轻易地像从其他模块中导入数据一样来进行导入操作。

调用timeit.Timer对象的timeit()方法时,首先将执行构造子的第二个参数(如果有), 之后执行构造子的第一个参数并对其执行时间进行计时。timeit.Timer.timeit()方法的返回值是以秒计数的时间,类型是float。默认情况下,timeit()方法重复100万次,并返回所 有这些执行的总秒数,但在这一特定案例中,只需要1000次反复就可以给出有用的结果, 因此对重复计数次数进行了显式指定。在对每个函数进行计时后,使用重复次数对总数进行除法操作,就得到了平均执行时间,并在控制台中打印出函数名与执行时间。

function_a() 0.001618 sec

function_b() 0.012786 sec

function_c() 0.003248 sec

在这一实例中,function_a()显然是最快的——至少对于这里使用的输入数据而言。 在有些情况下一一比如输入数据不同会对性能产生巨大影响——可能需要使用多组输入数据对每个函数进行测试,以便覆盖有代表性的测试用例,并对总执行时间或平均执行时间进行比较。

有时监控自己的代码进行计时并不是很方便,因此timeit模块提供了一种在命令行中对代码执行时间进行计时的途径。比如,要对MyModule.py模块中的函数function_a()进行计时,可以在控制台中输入如下命令:python3 -m timeit -n 1000 -s "from MyModule import function_a, X, Y" "function_a(X, Y)"(与通常所做的一样,对 Windows 环境,我们必须使用类似于C:Python3lpython.exe这样的内容来替换python3)。-m选项用于Python 解释器,使其可以加载指定的模块(这里是timeit),其他选项则由timeit模块进行处理。 -n选项指定了循环计数次数,-s选项指定了要建立,最后一个参数是要执行和计时的代码。命令完成后,会向控制台中打印运行结果,比如:

1000 loops, best of 3: 1.41 msec per loop

之后我们可以轻易地对其他两个函数进行计时,以便对其进行整体的比较。

cProfile模块(或者profile模块,这里统称为cProfile模块)也可以用于比较函数 与方法的性能。与只是提供原始计时的timeit模块不同的是,cProfile模块精确地展示 了有什么被调用以及每个调用耗费了多少时间。下面是用于比较与前面一样的3个函数的代码:

if __name__ == "__main__":

for function in ("function_a", "function_b", "function_c"):

cProfile.run("for i in ranged 1000): {0}(X, Y)".format(function))

我们必须将重复的次数放置在要传递给cProfile.run()函数的代码内部,但不需要做任何创建,因为模块函数会使用内省来寻找需要使用的函数与变量。这里没有使用显式的print()语句,因为默认情况下,cProfile.run()函数会在控制台中打印其输出。下面给出的是所有函数的相关结果(有些无关行被省略,格式也进行了稍许调整,以便与页面适应):

1003 function calls in 1.661 CPU seconds

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.003 0.003 1.661 1.661 :1 ( )

1000 1.658 0.002 1.658 0.002 MyModule.py:21 (function_a)

1 0.000 0.000 1.661 1.661 {built-in method exec}

5132003 function calls in 22.700 CPU seconds

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.487 0.487 22.700 22.700 : 1 ( )

1000 0.011 0.000 22.213 0.022 MyModule.py:28(function_b)

5128000 7.048 0.000 7.048 0.000 MyModule.py:29( )

1000 0.00 50.000 0.005 0.000 {built-in method bisectjeft}

1 0.000 0.000 22.700 22.700 {built-in method exec}

1000 0.001 0.000 0.001 0.000 {built-in method len}

1000 15.149 0.015 22.196 0.022 {built-in method sorted}

5129003 function calls in 12.987 CPU seconds

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.205 0.205 12.987 12.987 :l ( )

1000 6.472 0.006 12.782 0.013 MyModule.py:36(function_c)

5128000 6.311 0.000 6.311 0.000 MyModule.py:37( )

1 0.000 0.000 12.987 12.987 {built-in method exec}

ncalls ("调用的次数")列列出了对指定函数(在filename:lineno(function)中列出) 的调用次数。回想一下我们重复了 1000次调用,因此必须将这个次数记住。tottime (“总的时间”)列列出了某个函数中耗费的总时间,但是排除了函数调用的其他函数内部花费的时间。第一个percall列列出了对函数的每次调用的平均时间(tottime // ncalls)。 cumtime ("累积时间")列出了在函数中耗费的时间,并且包含了函数调用的其他函数内部花费的时间。第二个percall列列出了对函数的每次调用的平均时间,包括其调用的函数耗费的时间。

这种输出信息要比timeit模块的原始计时信息富有启发意义的多。我们立即可以发现,function_b()与function_c()使用了被调用5000次以上的生成器,使得它们的速度至少要比function_a()慢10倍以上。并且,function_b()调用了更多通常意义上的函数,包括调用内置的sorted()函数,这使得其几乎比function_c()还要慢两倍。当然,timeit() 模块提供了足够的信息来查看计时上存在的这些差别,但cProfile模块允许我们了解为什么会存在这些差别。正如timeit模块允许对代码进行计时而又不需要对其监控一样,cProfile模块也可以做到这一点。然而,从命令行使用cProfile模块时,我们不能精确地指定要执行的 是什么——而只是执行给定的程序或模块,并报告所有这些的计时结果。需要使用的 命令行是python3 -m cProfile programOrModule.py,产生的输出信息与前面看到的一 样,下面给出的是输出信息样例,格式上进行了一些调整,并忽略了大多数行:

10272458 function calls (10272457 primitive calls) in 37.718 CPU secs

ncalls tottime percall cumtime percall filename:lineno(function)

10.000 0.000 37.718 37.718 :1 ( )

10.719 0.719 37.717 37.717 :12( )

1000 1.569 0.002 1.569 0.002 :20(function_a)

1000 0.011 0.000 22.560 0.023 :27(function_b)

5128000 7.078 0.000 7.078 0.000 :28( )

1000 6.510 0.007 12.825 0.013 :35(function_c)

5128000 6.316 0.000 6.316 0.000 :36( )

在cProfile术语学中,原始调用指的就是非递归的函数调用。

以这种方式使用cProfile模块对于识别值得进一步研究的区域是有用的。比如,这里 我们可以清晰地看到function_b()需要耗费更长的时间,但是我们怎样获取进一步的详细资料?我们可以使用cProfile.run("function_b()")来替换对function_b()的调用。或者可以保存完全的profile数据并使用pstats模块对其进行分析。要保存profile,就必须对命令行进行稍许修改:python3 -m cProfile -o profileDataFile programOrModule.py。 之后可以对 profile 数据进行分析,比如启动IDLE,导入pstats模块,赋予其已保存的profileDataFile,或者也可以在控制台中交互式地使用pstats。

下面给出的是一个非常短的控制台会话实例,为使其适合页面展示,进行了适当调整,我们自己的输入则以粗体展示:

$ python3 -m cProfile -o profile.dat MyModule.py

$ python3 -m pstats

Welcome to the profile statistics browser.

% read profile.dat

profile.dat% callers function_b

Random listing order was used

List reduced from 44 to 1 due to restriction

Function was called by...

ncalls tottime cumtime

:27(function_b) - 1000 0.011 22.251 :12( )

profile.dat% callees function_b

Random listing order was used

List reduced from 44 to 1 due to restriction

Function called...

ncalls tottime cumtime

:27(function_b)-

1000 0.005 0.005 built-in method bisectJeft

1000 0.001 0.001 built-in method len

1000 1 5.297 22.234 built-in method sorted

profile.dat% quit

输入help可以获取命令列表,help后面跟随命令名可以获取该命令的更多信息。比如, help stats将列出可以赋予stats命令的参数。还有其他一些可用的工具,可以提供profile数据的图形化展示形式,比如 RunSnakeRun (), 该工具需要依赖于wxPython GUI库。

使用timeit与cProfile模块,我们可以识别出我们自己代码中哪些区域会耗费超过预期的时间;使用cProfile模块,还可以准确算岀时间消耗在哪里。

以上内容部分摘自视频课程 05后端编程Python-19调试、测试和性能调优(下) ,更多实操示例请参照视频讲解。跟着张员外讲编程,学习更轻松,不花钱还能学习真本领。


推荐阅读
author-avatar
书友58684991
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有