热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Graphvisualizationfailed:GraphDefsfailedtoreconcile.

InTensorFlowv2,belowcodecancauseGraphDefreconciliationerror.

In TensorFlow v2, below code can cause GraphDef reconciliation error.

1
2
3
4
5
6
7
8
9
10
py

.function

def foo(x):

  return x ** 2



with writer.as_default():

  tf.summary.trace_on()

  foo(1)

  foo(2)

  tf.summary.trace_export("foo")

Depending on the argument,

1
tf.function

(really, auto-graph) creates ops that are unique within GraphDef but is not globally unique. In the example above, two GraphDefs (on from

1
foo(1)

and another from

1
foo(2)

) will be written out and they can collide badly in names and content.

In such case, instead of showing wrong graph content, TensorBoard throws an error.

该提问来源于开源项目:tensorflow/tensorboard

I had the same issue. Tensorboard needs unique names to be given to the graph variables (I don't why and I hope this issue will be fixed). In your case this piece of code should fix it:



1
2
3
4
5
6
7
8
9
10
11
12
import tensorflow as tf



.function

def foo(x):

  return x ** 2



writer=tf.summary.create_file_writer('logs\\')

with writer.as_default():

  tf.summary.trace_on()

  foo(tf.Variable(1, name='foo1')) # define a unique name for the variable

  foo(tf.Variable(2, name='foo2'))

  tf.summary.trace_export("foo", step=0)

This issue also exists when overriding tf.Module. Then, self.name_scope (or tf.name_scope) can be used when defining the module variables (wrapping the other operations or not). Here is an example of a custom Dense layer:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import tensorflow as tf

import numpy as np



class Dense(tf.Module):

 #  Fully-connected layer.

 def __init__(self, out_fmaps, name=None):

  super().__init__(name=name)

  self.is_built = False

  self.out_fmaps = out_fmaps



def __call__(self, x):

 if not self.is_built:

  with self.name_scope: # Creates the variable under name_scope

   he_init = np.sqrt(2/x.shape[-1])

   init_val = tf.random.normal([x.shape[-1], self.out_fmaps])*he_init

   self.w = tf.Variable(init_val, name='dense')

  self.is_built = True

 return tf.matmul(x, self.w)



   



推荐阅读
  • 分享一款基于Java开发的经典贪吃蛇游戏实现
    本文介绍了一款使用Java语言开发的经典贪吃蛇游戏的实现。游戏主要由两个核心类组成:`GameFrame` 和 `GamePanel`。`GameFrame` 类负责设置游戏窗口的标题、关闭按钮以及是否允许调整窗口大小,并初始化数据模型以支持绘制操作。`GamePanel` 类则负责管理游戏中的蛇和苹果的逻辑与渲染,确保游戏的流畅运行和良好的用户体验。 ... [详细]
  • iOS snow animation
    CTSnowAnimationView.hCTMyCtripCreatedbyalexon1614.Copyright©2016年ctrip.Allrightsreserved.# ... [详细]
  • HTML 页面中调用 JavaScript 函数生成随机数值并自动展示
    在HTML页面中,通过调用JavaScript函数生成随机数值,并将其自动展示在页面上。具体实现包括构建HTML页面结构,定义JavaScript函数以生成随机数,以及在页面加载时自动调用该函数并将结果呈现给用户。 ... [详细]
  • 本文介绍了UUID(通用唯一标识符)的概念及其在JavaScript中生成Java兼容UUID的代码实现与优化技巧。UUID是一个128位的唯一标识符,广泛应用于分布式系统中以确保唯一性。文章详细探讨了如何利用JavaScript生成符合Java标准的UUID,并提供了多种优化方法,以提高生成效率和兼容性。 ... [详细]
  • MySQL初级篇——字符串、日期时间、流程控制函数的相关应用
    文章目录:1.字符串函数2.日期时间函数2.1获取日期时间2.2日期与时间戳的转换2.3获取年月日、时分秒、星期数、天数等函数2.4时间和秒钟的转换2. ... [详细]
  • 如果应用程序经常播放密集、急促而又短暂的音效(如游戏音效)那么使用MediaPlayer显得有些不太适合了。因为MediaPlayer存在如下缺点:1)延时时间较长,且资源占用率高 ... [详细]
  • Ihavetwomethodsofgeneratingmdistinctrandomnumbersintherange[0..n-1]我有两种方法在范围[0.n-1]中生 ... [详细]
  • 本文详细介绍了 PHP 中对象的生命周期、内存管理和魔术方法的使用,包括对象的自动销毁、析构函数的作用以及各种魔术方法的具体应用场景。 ... [详细]
  • 开机自启动的几种方式
    0x01快速自启动目录快速启动目录自启动方式源于Windows中的一个目录,这个目录一般叫启动或者Startup。位于该目录下的PE文件会在开机后进行自启动 ... [详细]
  • 本文介绍了如何利用 `matplotlib` 库中的 `FuncAnimation` 类将 Python 中的动态图像保存为视频文件。通过详细解释 `FuncAnimation` 类的参数和方法,文章提供了多种实用技巧,帮助用户高效地生成高质量的动态图像视频。此外,还探讨了不同视频编码器的选择及其对输出文件质量的影响,为读者提供了全面的技术指导。 ... [详细]
  • 本文详细解析了 Android 系统启动过程中的核心文件 `init.c`,探讨了其在系统初始化阶段的关键作用。通过对 `init.c` 的源代码进行深入分析,揭示了其如何管理进程、解析配置文件以及执行系统启动脚本。此外,文章还介绍了 `init` 进程的生命周期及其与内核的交互方式,为开发者提供了深入了解 Android 启动机制的宝贵资料。 ... [详细]
  • 如何使用ES6语法编写Webpack配置文件? ... [详细]
  • 本文详细探讨了使用纯JavaScript开发经典贪吃蛇游戏的技术细节和实现方法。通过具体的代码示例,深入解析了游戏逻辑、动画效果及用户交互的实现过程,为开发者提供了宝贵的参考和实践经验。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 探索聚类分析中的K-Means与DBSCAN算法及其应用
    聚类分析是一种用于解决样本或特征分类问题的统计分析方法,也是数据挖掘领域的重要算法之一。本文主要探讨了K-Means和DBSCAN两种聚类算法的原理及其应用场景。K-Means算法通过迭代优化簇中心来实现数据点的划分,适用于球形分布的数据集;而DBSCAN算法则基于密度进行聚类,能够有效识别任意形状的簇,并且对噪声数据具有较好的鲁棒性。通过对这两种算法的对比分析,本文旨在为实际应用中选择合适的聚类方法提供参考。 ... [详细]
author-avatar
手机用户2602916141
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有