原文链接:https://fuckcloudnative.io/posts/how-to-back-up-all-of-your-grafana-dashboards/
目前我们 k8s 集群的 Grafana
使用 ceph 作为持久化存储,一但我将 Grafana 的 Deployment 删除重建之后,之前的所有数据都会丢失,重建的 PV 会映射到后端存储的新位置。万幸的是,我真的手欠重建了,还没有提前备份。。。万幸个鬼啊我。
在我历经 250 分钟重建 Dashboard 之后,心里久久不能平静,一句 MMP 差点就要脱口而出。
再这样下去我真的要变成 250 了,这怎么能忍,立马打开 Google 研究了一把 Grafana 备份的各种骚操作,发现大部分备份方案都是通过 shell
脚本调用 Grafana 的 API
来导出各种配置。备份脚本大部分都集中在这个 gist 中:
我挑选出几个比较好用的,大家也可以自行挑选其他的。
#!/bin/bash
# Usage:
#
# export_grafana_dashboards.sh https://admin:REDACTED@grafana.dedevsecops.com
create_slug () {
echo "$1" | iconv -t ascii//TRANSLIT | sed -r s/[^a-zA-Z0-9]+/-/g | sed -r s/^-+\|-+$//g | tr A-Z a-z
}
full_url=$1
username=$(echo "${full_url}" | cut -d/ -f 3 | cut -d: -f 1)
base_url=$(echo "${full_url}" | cut -d@ -f 2)
folder=$(create_slug "${username}-${base_url}")
mkdir "${folder}"
for db_uid in $(curl -s "${full_url}/api/search" | jq -r .[].uid); do
db_json=$(curl -s "${full_url}/api/dashboards/uid/${db_uid}")
db_slug=$(echo "${db_json}" | jq -r .meta.slug)
db_title=$(echo "${db_json}" | jq -r .dashboard.title)
filename="${folder}/${db_slug}.json"
echo "Exporting \"${db_title}\" to \"${filename}\"..."
echo "${db_json}" | jq -r . > "${filename}"
done
echo "Done"
这个脚本比较简单,直接导出了所有 Dashboard 的 json
配置,也没有标记目录信息,如果你用它导出的配置来恢复 Grafana,所有的 Dashboard 都会导入到 Grafana 的 General
目录下,不太友好。
grafana-dashboard-importer.sh
#!/bin/bash
#
# add the "-x" option to the shebang line if you want a more verbose output
#
#
OPTSPEC=":hp:t:k:"
show_help() {
cat <
Script to import dashboards into Grafana
-p Required. Root path containing JSON exports of the dashboards you want imported.
-t Required. The full URL of the target host
-k Required. The API key to use on the target host
-h Display this help and exit.
EOF
}
###### Check script invocation options ######
while getopts "$OPTSPEC" optchar; do
case "$optchar" in
h)
show_help
exit
;;
p)
DASH_DIR="$OPTARG";;
t)
HOST="$OPTARG";;
k)
KEY="$OPTARG";;
\?)
echo "Invalid option: -$OPTARG" >&2
exit 1
;;
:)
echo "Option -$OPTARG requires an argument." >&2
exit 1
;;
esac
done
if [ -z "$DASH_DIR" ] || [ -z "$HOST" ] || [ -z "$KEY" ]; then
show_help
exit 1
fi
# set some colors for status OK, FAIL and titles
SETCOLOR_SUCCESS="echo -en \3[0;32m"
SETCOLOR_FAILURE="echo -en \3[1;31m"
SETCOLOR_NORMAL="echo -en \3[0;39m"
SETCOLOR_TITLE_PURPLE="echo -en \3[0;35m" # purple
# usage log "string to log" "color option"
function log_success() {
if [ $# -lt 1 ]; then
${SETCOLOR_FAILURE}
echo "Not enough arguments for log function! Expecting 1 argument got $#"
exit 1
fi
timestamp=$(date "+%Y-%m-%d %H:%M:%S %Z")
${SETCOLOR_SUCCESS}
printf "[%s] $1\n" "$timestamp"
${SETCOLOR_NORMAL}
}
function log_failure() {
if [ $# -lt 1 ]; then
${SETCOLOR_FAILURE}
echo "Not enough arguments for log function! Expecting 1 argument got $#"
exit 1
fi
timestamp=$(date "+%Y-%m-%d %H:%M:%S %Z")
${SETCOLOR_FAILURE}
printf "[%s] $1\n" "$timestamp"
${SETCOLOR_NORMAL}
}
function log_title() {
if [ $# -lt 1 ]; then
${SETCOLOR_FAILURE}
log_failure "Not enough arguments for log function! Expecting 1 argument got $#"
exit 1
fi
${SETCOLOR_TITLE_PURPLE}
printf "|-------------------------------------------------------------------------|\n"
printf "|%s|\n" "$1";
printf "|-------------------------------------------------------------------------|\n"
${SETCOLOR_NORMAL}
}
if [ -d "$DASH_DIR" ]; then
DASH_LIST=$(find "$DASH_DIR" -mindepth 1 -name \*.json)
if [ -z "$DASH_LIST" ]; then
log_title "----------------- $DASH_DIR contains no JSON files! -----------------"
log_failure "Directory $DASH_DIR does not appear to contain any JSON files for import. Check your path and try again."
exit 1
else
FILESTOTAL=$(echo "$DASH_LIST" | wc -l)
log_title "----------------- Starting import of $FILESTOTAL dashboards -----------------"
fi
else
log_title "----------------- $DASH_DIR directory not found! -----------------"
log_failure "Directory $DASH_DIR does not exist. Check your path and try again."
exit 1
fi
NUMSUCCESS=0
NUMFAILURE=0
COUNTER=0
for DASH_FILE in $DASH_LIST; do
COUNTER=$((COUNTER + 1))
echo "Import $COUNTER/$FILESTOTAL: $DASH_FILE..."
RESULT=$(cat "$DASH_FILE" | jq '. * {overwrite: true, dashboard: {id: null}}' | curl -s -X POST -H "Content-Type: application/json" -H "Authorization: Bearer $KEY" "$HOST"/api/dashboards/db -d @-)
if [[ "$RESULT" == *"success"* ]]; then
log_success "$RESULT"
NUMSUCCESS=$((NUMSUCCESS + 1))
else
log_failure "$RESULT"
NUMFAILURE=$((NUMFAILURE + 1))
fi
done
log_title "Import complete. $NUMSUCCESS dashboards were successfully imported. $NUMFAILURE dashboard imports failed.";
log_title "------------------------------ FINISHED ---------------------------------";
导入脚本需要目标机器上的 Grafana 已经启动,而且需要提供管理员 API Key。登录 Grafana Web 界面,打开 API Keys:
新建一个 API Key,角色选择 Admin
,过期时间自己调整:
导入方式:
$ ./grafana-dashboard-importer.sh -t http://
其中 -p
参数指定的是之前导出的 json 所在的目录。
目前的方案痛点在于只能备份 Dashboard,不能备份其他的配置(例如,数据源、用户、秘钥等),而且没有将 Dashboard 和目录对应起来,即不支持备份 Folder
。下面介绍一个比较完美的备份恢复方案,支持所有配置的备份恢复,简直不要太香。
更高级的方案已经有人写好了,项目地址是:
该备份工具支持以下几种配置:
使用方法很简单,跑个容器就好了嘛,不过作者提供的 Dockerfile
我不是很满意,自己修改了点内容:
FROM alpine:latest
LABEL maintainer="grafana-backup-tool Docker Maintainers https://fuckcloudnative.io"
ENV ARCHIVE_FILE ""
RUN echo "@edge http://dl-cdn.alpinelinux.org/alpine/edge/community" >> /etc/apk/repositories; \
apk --no-cache add python3 py3-pip py3-cffi py3-cryptography ca-certificates bash git; \
git clone https://github.com/ysde/grafana-backup-tool /opt/grafana-backup-tool; \
cd /opt/grafana-backup-tool; \
pip3 --no-cache-dir install .; \
chown -R 1337:1337 /opt/grafana-backup-tool
WORKDIR /opt/grafana-backup-tool
USER 1337
只有 Dockerfile
不行,还得通过 CI/CD
自动构建并推送到 docker.io
。不要问我用什么,当然是白嫖 GitHub Action
,workflow
内容如下:
#=================================================
# https://github.com/yangchuansheng/docker-image
# Description: Build and push grafana-backup-tool Docker image
# Lisence: MIT
# Author: Ryan
# Blog: https://fuckcloudnative.io
#=================================================
name: Build and push grafana-backup-tool Docker image
# Controls when the action will run. Triggers the workflow on push or pull request
# events but only for the master branch
on:
push:
branches: [ master ]
paths:
- 'grafana-backup-tool/Dockerfile'
- '.github/workflows/grafana-backup-tool.yml'
pull_request:
branches: [ master ]
paths:
- 'grafana-backup-tool/Dockerfile'
#watch:
#types: started
# A workflow run is made up of one or more jobs that can run sequentially or in parallel
jobs:
# This workflow contains a single job called "build"
build:
# The type of runner that the job will run on
runs-on: ubuntu-latest
# Steps represent a sequence of tasks that will be executed as part of the job
steps:
# Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it
- uses: actions/checkout@v2
- name: Set up QEMU
uses: docker/setup-qemu-action@v1
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
- name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Login to GitHub Package Registry
env:
username: ${{ github.repository_owner }}
password: ${{ secrets.GHCR_TOKEN }}
run: echo ${{ env.password }} | docker login ghcr.io -u ${{ env.username }} --password-stdin
# Runs a single command using the runners shell
- name: Build and push Docker images to docker.io and ghcr.io
uses: docker/build-push-action@v2
with:
file: 'grafana-backup-tool/Dockerfile'
platforms: linux/386,linux/amd64,linux/arm/v6,linux/arm/v7,linux/arm64,linux/ppc64le,linux/s390x
context: grafana-backup-tool
push: true
tags: |
yangchuansheng/grafana-backup-tool:latest
ghcr.io/yangchuansheng/grafana-backup-tool:latest
#- name: Update repo description
#uses: peter-evans/dockerhub-description@v2
#env:
#DOCKERHUB_USERNAME: ${{ secrets.DOCKER_USERNAME }}
#DOCKERHUB_PASSWORD: ${{ secrets.DOCKER_PASSWORD }}
#DOCKERHUB_REPOSITORY: yangchuansheng/grafana-backup-tool
#README_FILEPATH: grafana-backup-tool/readme.md
这里我不打算解释 workflow 的内容,有点基础的应该都能看懂,实在不行,以后我会单独写文章解释(又可以继续水文了~)。这个 workflow 实现的功能就是自动构建各个 CPU 架构的镜像,并推送到 docker.io
和 ghcr.io
,特么的真香!
就问爽不爽?
你可以直接关注我的仓库:
构建好镜像后,就可以直接运行容器来进行备份和恢复操作了。如果你想在集群内操作,可以通过 Deployment 或 Job 来实现;如果你想在本地或 k8s 集群外操作,可以选择 docker run,我不反对,你也可以选择 docker-compose,这都没问题。但我要告诉你一个更骚的办法,可以骚到让你无法自拔。
首先需要在本地或集群外安装 Podman,如果操作系统是 Win10
,可以考虑通过 WSL
来安装;如果操作系统是 Linux,那就不用说了;如果操作系统是 MacOS,请参考我的上篇文章:在 macOS 中使用 Podman。
装好了 Podman 之后,就可以进行骚操作了,请睁大眼睛。
先编写一个 Deployment 配置清单(什么?Deployment?是的,你没听错):
grafana-backup-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: grafana-backup
labels:
app: grafana-backup
spec:
replicas: 1
selector:
matchLabels:
app: grafana-backup
template:
metadata:
labels:
app: grafana-backup
spec:
containers:
- name: grafana-backup
image: yangchuansheng/grafana-backup-tool:latest
imagePullPolicy: IfNotPresent
command: ["/bin/bash"]
tty: true
stdin: true
env:
- name: GRAFANA_TOKEN
value: "eyJr0NkFBeWV1QVpMNjNYWXA3UXNOM2JWMWdZOTB2ZFoiLCJuIjoiYWRtaW4iLCJpZCI6MX0="
- name: GRAFANA_URL
value: "http://
- name: GRAFANA_ADMIN_ACCOUNT
value: "admin"
- name: GRAFANA_ADMIN_PASSWORD
value: "admin"
- name: VERIFY_SSL
value: "False"
volumeMounts:
- mountPath: /opt/grafana-backup-tool
name: data
volumes:
- name: data
hostPath:
path: /mnt/manifest/grafana/backup
这里面的环境变量根据自己的实际情况修改,一定不要照抄我的!
不要一脸懵逼,我先来解释一下为什么要准备这个 Deployment 配置清单,因为 Podman 可以直接通过这个配置清单运行容器,命令如下:
$ podman play kube grafana-backup-deployment.yaml
我第一次见到这个操作的时候也不禁连连我艹,这也可以?确实可以,不过呢,Podman 只是将其翻译一下,跑个容器而已,并不是真正运行 Deployment
,因为它没有控制器啊,但是,还是真香!
想象一下,你可以将 k8s 集群中的配置清单拿到本地或测试机器直接跑,再也不用 k8s 集群准备一份 yaml,docker-compose
再准备一份 yaml 了,一份 yaml 走天下,服不服?
docker-compose
混到今天这个地步,也是蛮可怜的。
细心的读者应该能发现上面的配置清单有点奇怪,Dockerfile
也有点奇怪。Dockerfile 中没有写 CMD
或 ENTRYPOINT
,Deployment 中直接将启动命令设置为 bash,这是因为在我之前测试的过程中发现该镜像启动的容器有点问题,它会陷入一个循环,备份完了之后又会继续备份,不断重复,导致备份目录下生成了一坨压缩包。目前还没找到比较好的解决办法,只能将容器的启动命令设置为 bash,等容器运行后再进入容器进行备份操作:
$ podman pod ls
POD ID NAME STATUS CREATED # OF CONTAINERS INFRA ID
728aec216d66 grafana-backup-pod-0 Running 3 minutes ago 2 92aa0824fe7d
$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b523fa8e4819 yangchuansheng/grafana-backup-tool:latest /bin/bash 3 minutes ago Up 3 minutes ago grafana-backup-pod-0-grafana-backup
92aa0824fe7d k8s.gcr.io/pause:3.2 3 minutes ago Up 3 minutes ago 728aec216d66-infra
$ podman exec -it grafana-backup-pod-0-grafana-backup bash
bash-5.0$ grafana-backup save
...
...
########################################
backup folders at: _OUTPUT_/folders/202012111556
backup datasources at: _OUTPUT_/datasources/202012111556
backup dashboards at: _OUTPUT_/dashboards/202012111556
backup alert_channels at: _OUTPUT_/alert_channels/202012111556
backup organizations at: _OUTPUT_/organizations/202012111556
backup users at: _OUTPUT_/users/202012111556
created archive at: _OUTPUT_/202012111556.tar.gz
默认情况下会备份所有的组件,你也可以指定备份的组件:
$ grafana-backup save --compOnents=
比如,我只想备份 Dashboards 和 Folders:
$ grafana-backup save --compOnents=folders,dashboards
当然,你也可以全部备份,恢复的时候再选择自己想恢复的组件:
$ grafana-backup restore --compOnents=folders,dashboards
至此,再也不用怕 Dashboard 被改掉或删除啦。
最后提醒一下,Prometheus Operator 项目中的 Grafana 通过 Provisioning 的方式预导入了一些默认的 Dashboards,这本来没有什么问题,但 grafana-backup-tool
工具无法忽略跳过已经存在的配置,如果恢复的过程中遇到已经存在的配置,会直接报错退出。本来这也很好解决,一般情况下到 Grafana Web 界面中删除所有的 Dashboard 就好了,但通过 Provisioning 导入的 Dashboard 是无法删除的,这就很尴尬了。
在作者修复这个 bug 之前,要想解决这个问题,有两个办法:
第一个办法是在恢复之前将 Grafana Deployment 中关于 Provisioning 的配置全部删除,就是这些配置:
volumeMounts:
- mountPath: /etc/grafana/provisioning/datasources
name: grafana-datasources
readOnly: false
- mountPath: /etc/grafana/provisioning/dashboards
name: grafana-dashboards
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/apiserver
name: grafana-dashboard-apiserver
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/cluster-total
name: grafana-dashboard-cluster-total
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/controller-manager
name: grafana-dashboard-controller-manager
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/k8s-resources-cluster
name: grafana-dashboard-k8s-resources-cluster
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/k8s-resources-namespace
name: grafana-dashboard-k8s-resources-namespace
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/k8s-resources-node
name: grafana-dashboard-k8s-resources-node
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/k8s-resources-pod
name: grafana-dashboard-k8s-resources-pod
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/k8s-resources-workload
name: grafana-dashboard-k8s-resources-workload
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/k8s-resources-workloads-namespace
name: grafana-dashboard-k8s-resources-workloads-namespace
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/kubelet
name: grafana-dashboard-kubelet
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/namespace-by-pod
name: grafana-dashboard-namespace-by-pod
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/namespace-by-workload
name: grafana-dashboard-namespace-by-workload
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/node-cluster-rsrc-use
name: grafana-dashboard-node-cluster-rsrc-use
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/node-rsrc-use
name: grafana-dashboard-node-rsrc-use
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/nodes
name: grafana-dashboard-nodes
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/persistentvolumesusage
name: grafana-dashboard-persistentvolumesusage
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/pod-total
name: grafana-dashboard-pod-total
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/prometheus-remote-write
name: grafana-dashboard-prometheus-remote-write
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/prometheus
name: grafana-dashboard-prometheus
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/proxy
name: grafana-dashboard-proxy
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/scheduler
name: grafana-dashboard-scheduler
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/statefulset
name: grafana-dashboard-statefulset
readOnly: false
- mountPath: /grafana-dashboard-definitions/0/workload-total
name: grafana-dashboard-workload-total
readOnly: false
...
...
volumes:
- name: grafana-datasources
secret:
secretName: grafana-datasources
- configMap:
name: grafana-dashboards
name: grafana-dashboards
- configMap:
name: grafana-dashboard-apiserver
name: grafana-dashboard-apiserver
- configMap:
name: grafana-dashboard-cluster-total
name: grafana-dashboard-cluster-total
- configMap:
name: grafana-dashboard-controller-manager
name: grafana-dashboard-controller-manager
- configMap:
name: grafana-dashboard-k8s-resources-cluster
name: grafana-dashboard-k8s-resources-cluster
- configMap:
name: grafana-dashboard-k8s-resources-namespace
name: grafana-dashboard-k8s-resources-namespace
- configMap:
name: grafana-dashboard-k8s-resources-node
name: grafana-dashboard-k8s-resources-node
- configMap:
name: grafana-dashboard-k8s-resources-pod
name: grafana-dashboard-k8s-resources-pod
- configMap:
name: grafana-dashboard-k8s-resources-workload
name: grafana-dashboard-k8s-resources-workload
- configMap:
name: grafana-dashboard-k8s-resources-workloads-namespace
name: grafana-dashboard-k8s-resources-workloads-namespace
- configMap:
name: grafana-dashboard-kubelet
name: grafana-dashboard-kubelet
- configMap:
name: grafana-dashboard-namespace-by-pod
name: grafana-dashboard-namespace-by-pod
- configMap:
name: grafana-dashboard-namespace-by-workload
name: grafana-dashboard-namespace-by-workload
- configMap:
name: grafana-dashboard-node-cluster-rsrc-use
name: grafana-dashboard-node-cluster-rsrc-use
- configMap:
name: grafana-dashboard-node-rsrc-use
name: grafana-dashboard-node-rsrc-use
- configMap:
name: grafana-dashboard-nodes
name: grafana-dashboard-nodes
- configMap:
name: grafana-dashboard-persistentvolumesusage
name: grafana-dashboard-persistentvolumesusage
- configMap:
name: grafana-dashboard-pod-total
name: grafana-dashboard-pod-total
- configMap:
name: grafana-dashboard-prometheus-remote-write
name: grafana-dashboard-prometheus-remote-write
- configMap:
name: grafana-dashboard-prometheus
name: grafana-dashboard-prometheus
- configMap:
name: grafana-dashboard-proxy
name: grafana-dashboard-proxy
- configMap:
name: grafana-dashboard-scheduler
name: grafana-dashboard-scheduler
- configMap:
name: grafana-dashboard-statefulset
name: grafana-dashboard-statefulset
- configMap:
name: grafana-dashboard-workload-total
name: grafana-dashboard-workload-total
第二个办法就是删除 Prometheus Operator 自带的 Grafana,自己通过 Helm
或者 manifest
部署不使用 Provisioning
的 Grafana。
如果你既不想删除 Provisioning 的配置,也不想自己部署 Grafana,那只能使用上文提到的低级方案了。
Kubernetes 1.18.2 1.17.5 1.16.9 1.15.12离线安装包发布地址http://store.lameleg.com ,欢迎体验。 使用了最新的sealos v3.3.6版本。 作了主机名解析配置优化,lvscare 挂载/lib/module解决开机启动ipvs加载问题, 修复lvscare社区netlink与3.10内核不兼容问题,sealos生成百年证书等特性。更多特性 https://github.com/fanux/sealos 。欢迎扫描下方的二维码加入钉钉群 ,钉钉群已经集成sealos的机器人实时可以看到sealos的动态。