作者:会长大的幸福7007 | 来源:互联网 | 2023-10-10 21:21
Airflow1.引言Airflow是Airbnb开源的一个用Python写就的工作流管理平台(workflowmanagementplatform)。在前一篇文章中,介绍了如何用
Airflow
1. 引言
Airflow是Airbnb开源的一个用Python写就的工作流管理平台(workflow management platform)。在前一篇文章中,介绍了如何用Crontab管理数据流,但是缺点也是显而易见。针对于Crontab的缺点,灵活可扩展的Airflow具有以下特点:
- 工作流依赖关系的可视化;
- 日志追踪;
- (Python脚本)易于扩展
对比Java系的Oozie,Airflow奉行“Configuration as code”哲学,对于描述工作流、判断触发条件等全部采用Python,使得你编写工作流就像在写脚本一样;能debug工作流(test backfill命令),更好地判别是否有错误;能更快捷地在线上做功能扩展。Airflow充分利用Python的灵巧轻便,相比之下Oozie则显得笨重厚拙太多(其实我没在黑Java~~)。《What makes Airflow great?》介绍了更多关于Airflow的优良特性;其他有关于安装、介绍的文档在这里、还有这里。
下表给出Airflow(基于1.7版本)与Oozie(基于4.0版本)对比情况:
工作流描述 |
Python |
xml |
数据触发 |
Sensor |
datasets, input-events |
工作流节点 |
operator |
action |
完整工作流 |
DAG |
workflow |
定期调度 |
DAG schedule_interval |
coordinator frequency |
|
|
|
任务依赖 |
>> , << |
|
内置函数、变量 |
template macros |
EL function, EL constants |
之前我曾提及Oozie没有能力表达复杂的DAG,是因为Oozie只能指定下流依赖(downstream)而不能指定上流依赖(upstream)。与之相比,Airflow就能表示复杂的DAG。Airflow没有像Oozie一样区分workflow与coordinator,而是把触发条件、工作流节点都看作一个operator,operator组成一个DAG。
2. 实战
下面将给出如何用Airflow完成data pipeline任务。
首先简要地介绍下背景:定时(每周)检查Hive表的partition的任务是否有生成,若有则触发Hive任务写Elasticsearch;然后等Hive任务完后,执行Python脚本查询Elasticsearch发送报表。但是,Airflow对Python3支持有问题(依赖包为Python2编写);因此不得不自己写HivePartitionSensor
:
Python3连接Hive server2的采用的是impyla模块,HivePartitionSensor
用于判断Hive表的partition是否存在。写自定义的operator,有点像写Hive、Pig的UDF;写好的operator需要放在目录~/airflow/dags
,以便于DAG调用。那么,完整的工作流DAG如下:
工作流管理平台Airflow