热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

工业互联网_工业互联网平台七大核心技术

本文由编程笔记#小编为大家整理,主要介绍了工业互联网平台七大核心技术相关的知识,希望对你有一定的参考价值。工业互联网平台需要解决多类工业设备接入、多源工业数据集成、海量数据管理
本文由编程笔记#小编为大家整理,主要介绍了工业互联网平台七大核心技术相关的知识,希望对你有一定的参考价值。


工业互联网平台需要解决多类工业设备接入、多源工业数据集成、海量数据管理与处理、工业数据建模分析、工业应用创新与集成、工业知识积累迭代实现等一系列问题,涉及七大类关键技术,分别为数据集成和边缘处理技术、IaaS技术、平台使能技术、数据管理技术、应用开发和微服务技术、工业数据建模与分析技术、安全技术

技术分享图片

1.数据集成与边缘处理技术

设备接入:基于工业以太网、工业总线等工业通信协议,以太网、光纤等通用协议,3G/4G、NB-IOT等无线协议将工业现场设备接入到平台边缘层。

协议转换:一方面运用协议解析、中间件等技术兼容ModBus、OPC、CAN、Profibus等各类工业通信协议和软件通信接口,实现数据格式转换和统一。另一方面利用HTTP、MQTT等方式从边缘侧将采集到的数据传输到云端,实现数据的远程接入。

边缘数据处理:基于高性能计算芯片、实时操作系统、边缘分析算法等技术支撑,在靠近设备或数据源头的网络边缘侧进行数据预处理、存储以及智能分析应用,提升操作响应灵敏度、消除网络堵塞,并与云端分析形成协同。

2.IaaS技术

基于虚拟化、分布式存储、并行计算、负载调度等技术,实现网络、计算、存储等计算机资源的池化管理,根据需求进行弹性分配,并确保资源使用的安全与隔离,为用户提供完善的云基础设施服务。

3.平台使能技术

资源调度:通过实时监控云端应用的业务量动态变化,结合相应的调度算法为应用程序分配相应的底层资源,从而使云端应用可以自动适应业务量的变化。

多租户管理:通过虚拟化、数据库隔离、容器等技术实现不同租户应用和服务的隔离,保护其隐私与安全。

4.数据管理技术

数据处理框架:借助Hadoop、Spark、Storm等分布式处理架构,满足海量数据的批处理和流处理计算需求。

数据预处理:运用数据冗余剔除、异常检测、归一化等方法对原始数据进行清洗,为后续存储、管理与分析提供高质量数据来源。

数据存储与管理:通过分布式文件系统、NoSQL数据库、关系数据库、时序数据库等不同的数据管理引擎实现海量工业数据的分区选择、存储、编目与索引等。

5.应用开发和微服务技术

多语言与工具支持:支持Java,Ruby和php等多种语言编译环境,并提供Eclipse integration,JBoss Developer Studio、git和 Jenkins等各类开发工具,构建高效便捷的集成开发环境。

微服务架构:提供涵盖服务注册、发现、通信、调用的管理机制和运行环境,支撑基于微型服务单元集成的“松耦合”应用开发和部署。

图形化编程:通过类似Labview的图形化编程工具,简化开发流程,支持用户采用拖拽方式进行应用创建、测试、扩展等。

6.工业数据建模与分析技术

数据分析算法:运用数学统计、机器学习及最新的人工智能算法实现面向历史数据、实时数据、时序数据的聚类、关联和预测分析。

机理建模:利用机械、电子、物理、化学等领域专业知识,结合工业生产实践经验,基于已知工业机理构建各类模型,实现分析应用。

7.安全技术

数据接入安全:通过工业防火墙技术、工业网闸技术、加密隧道传输技术,防止数据泄漏、被侦听或篡改,保障数据在源头和传输过程中安全。

平台安全:通过平台入侵实时检测、网络安全防御系统、恶意代码防护、网站威胁防护、网页防篡改等技术实现工业互联网平台的代码安全、应用安全、数据安全、网站安全。

访问安全:通过建立统一的访问机制,限制用户的访问权限和所能使用的计算资源和网络资源实现对云平台重要资源的访问控制和管理, 防止非法访问。


在上述七大类技术中,通用平台使能技术、工业数据建模与分析技术、数据集成与边缘处理技术、应用开发和微服务技术正快速发展,对工业互联网平台的构建和发展产生深远影响。在平台层,PaaS技术、新型集成技术和容器技术正加速改变信息系统的构建和组织方式。在边缘层,边缘计算技术极大的拓展了平台收集和管理数据的范围和能力。在应用层,微服务等新型开发框架驱动工业软件开发方式不断变革,而工业机理与数据科学深度融合则正在引发工业应用的创新浪潮。



推荐阅读
  • 本文介绍了如何在Spring框架中使用AspectJ实现AOP编程,重点讲解了通过注解配置切面的方法,包括方法执行前和方法执行后的增强处理。阅读本文前,请确保已安装并配置好AspectJ。 ... [详细]
  • 本文整理了一份基础的嵌入式Linux工程师笔试题,涵盖填空题、编程题和简答题,旨在帮助考生更好地准备考试。 ... [详细]
  • 本文介绍了如何查看PHP网站及其源码的方法,包括环境搭建、本地测试、源码查看和在线查找等步骤。 ... [详细]
  • 浅析python实现布隆过滤器及Redis中的缓存穿透原理_python
    本文带你了解了位图的实现,布隆过滤器的原理及Python中的使用,以及布隆过滤器如何应对Redis中的缓存穿透,相信你对布隆过滤 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • Presto:高效即席查询引擎的深度解析与应用
    本文深入解析了Presto这一高效的即席查询引擎,详细探讨了其架构设计及其优缺点。Presto通过内存到内存的数据处理方式,显著提升了查询性能,相比传统的MapReduce查询,不仅减少了数据传输的延迟,还提高了查询的准确性和效率。然而,Presto在大规模数据处理和容错机制方面仍存在一定的局限性。本文还介绍了Presto在实际应用中的多种场景,展示了其在大数据分析领域的强大潜力。 ... [详细]
  • 本文探讨了 Kafka 集群的高效部署与优化策略。首先介绍了 Kafka 的下载与安装步骤,包括从官方网站获取最新版本的压缩包并进行解压。随后详细讨论了集群配置的最佳实践,涵盖节点选择、网络优化和性能调优等方面,旨在提升系统的稳定性和处理能力。此外,还提供了常见的故障排查方法和监控方案,帮助运维人员更好地管理和维护 Kafka 集群。 ... [详细]
  • 2012年9月12日优酷土豆校园招聘笔试题目解析与备考指南
    2012年9月12日,优酷土豆校园招聘笔试题目解析与备考指南。在选择题部分,有一道题目涉及中国人的血型分布情况,具体为A型30%、B型20%、O型40%、AB型10%。若需确保在随机选取的样本中,至少有一人为B型血的概率不低于90%,则需要选取的最少人数是多少?该问题不仅考察了概率统计的基本知识,还要求考生具备一定的逻辑推理能力。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • 短视频app源码,Android开发底部滑出菜单首先依赖三方库implementationandroidx.appcompat:appcompat:1.2.0im ... [详细]
  • 本文整理了关于Sia去中心化存储平台的重要网址和资源,旨在为研究者和用户提供全面的信息支持。 ... [详细]
  • 本文介绍如何使用 Python 的 DOM 和 SAX 方法解析 XML 文件,并通过示例展示了如何动态创建数据库表和处理大量数据的实时插入。 ... [详细]
  • 为了在Hadoop 2.7.2中实现对Snappy压缩和解压功能的原生支持,本文详细介绍了如何重新编译Hadoop源代码,并优化其Native编译过程。通过这一优化,可以显著提升数据处理的效率和性能。此外,还探讨了编译过程中可能遇到的问题及其解决方案,为用户提供了一套完整的操作指南。 ... [详细]
  • 在List和Set集合中存储Object类型的数据元素 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
author-avatar
厦禾Tony_303
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有