热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

非常见降维方法:LaplacianEigenmaps拉普拉斯特征映射

原文地址拉普拉斯矩阵Laplacianmatrix的定义谈到机器学习中的降维技术,可能大多数了解一点机器学习的朋友都知道PCA,今天为大家介绍一种新的降

原文地址

拉普拉斯矩阵

Laplacian matrix 的定义

谈到机器学习中的降维技术,可能大多数了解一点机器学习的朋友都知道PCA,今天为大家介绍一种新的降维方法——拉普拉斯特征映射

拉普拉斯矩阵(Laplacian matrix)),也称为基尔霍夫矩阵, 是表示图的一种矩阵。给定一个有n个顶点的图G=(V,E) ,其拉普拉斯矩阵被定义为:L=D-W

其中D为图的度矩阵,W为图的邻接矩阵。(不知道度矩阵和邻接矩阵的请自行百度)

拉普拉斯矩阵L的性质


  • L是对称半正定矩阵;
  • 1 = 0 1 ,即 的最小特征值是0,相应的特征向量是 。证明:L* 1 = ( D-W) * 1 = 0 = 0 * 1 。
  • L 有n个非负实特征值
  • 且对于任何一个属于实向量f ,有以下式子成立 : 
    这里写图片描述

证明如下: 
这里写图片描述

Laplacian Eigenmaps 拉普拉斯特征映射

Laplacian Eigenmaps 是用局部的角度去构建数据之间的关系。如果两个数据实例i和j很相似,那么i和j在降维后目标子空间中应该尽量接近。它的直观思想是希望相互间有关系的点(在图中相连的点)在降维后的空间中尽可能的靠近。Laplacian Eigenmaps可以反映出数据内在的流形结构。 
这里写图片描述

使用时算法具体步骤为:

步骤1:构建图

使用某一种方法来将所有的点构建成一个图,例如使用KNN算法,将每个点最近的K个点连上边。K是一个预先设定的值。这样构建的图矩阵就是一个稀疏矩阵,只保留了最相似的K个邻居关系。

步骤2:确定权重

确定点与点之间的权重大小,例如选用热核函数来确定(当然这个地方你完全可以选择其他的相似度度量方式来衡量),如果点i和点j相连,那么它们关系的权重设定为:

这里写图片描述

使用最小的m个非零特征值对应的特征向量作为降维后的结果输出。

前面提到过,Laplacian Eigenmap具有区分数据点的特性,可以从下面的例子看出: 
这里写图片描述

见图1所示,左边的图表示有两类数据点(数据是图片),中间图表示采用Laplacian Eigenmap降维后每个数据点在二维空间中的位置,右边的图表示采用PCA并取前两个主要方向投影后的结果,可以清楚地看到,在此分类问题上,Laplacian Eigenmap的结果明显优于PCA。


推荐阅读
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 本文探讨了如何在 PHP 的 Eloquent ORM 中实现数据表之间的关联查询,并通过具体示例详细解释了如何将关联数据嵌入到查询结果中。这不仅提高了数据查询的效率,还简化了代码逻辑。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  •   上一篇博客中我们说到线性回归和逻辑回归之间隐隐约约好像有什么关系,到底是什么关系呢?我们就来探讨一下吧。(这一篇数学推导占了大多数,可能看起来会略有枯燥,但这本身就是一个把之前算法 ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • 探索如何使用公共数据集为您的编程项目提供动力。无论您是编程新手还是有经验的开发者,本文将为您提供实用建议和资源,帮助您启动并运行一个创新的数据驱动型项目。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 深入理解K近邻分类算法:机器学习100天系列(26)
    本文详细介绍了K近邻分类算法的理论基础,探讨其工作原理、应用场景以及潜在的局限性。作为机器学习100天系列的一部分,旨在为读者提供全面且深入的理解。 ... [详细]
  • 基于机器学习的人脸识别系统实现
    本文介绍了一种使用机器学习技术构建人脸识别系统的实践案例。通过结合Python编程语言和深度学习框架,详细展示了从数据预处理到模型训练的完整流程,并提供了代码示例。 ... [详细]
  • 随着生活节奏的加快和压力的增加,越来越多的人感到不快乐。本文探讨了现代社会中导致人们幸福感下降的各种因素,并提供了一些改善建议。 ... [详细]
author-avatar
书友32368660
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有