热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

二叉搜索树的一些相关算法介绍

二叉搜索树中,左子树值大于根节点,右子树值大于根节点,每一层子树都遵守以上规则。二叉搜索能够大大加快搜索速度,常规的搜索只能一个个比较,算法复杂度为n,二叉搜索树由于其结果特点能够将搜索负载度减小为log(n)。首先考虑节点的插入:从根节点开始,如果待插入节点的值大于根节点则向右子树查找,否则向左子树查找,直到到达叶节

二叉搜索树中,左子树值大于根节点,右子树值大于根节点,每一层子树都遵守以上规则。二叉搜索能够大大加快搜索速度,常规的搜索只能一个个比较,算法复杂度为n,二叉搜索树由于其结果特点能够将搜索负载度减小为log(n)。

首先定义二叉树的节点数据结构:

struct Tree
{
	struct Tree *p;
	struct Tree *l;
	struct Tree *r;
	char name[31];
	int num;
};

首先考虑节点的插入:

从根节点开始,如果待插入节点的值大于根节点则向右子树查找,否则向左子树查找,直到到达叶节点。如果叶节点值大于待插入节点,将待插入节点设为叶节点的左子树,否则为右子树。注意,考虑空树的情况。

void add_num(char name[],struct Tree * tree,struct Tree *parent)
{
    struct Tree * new_node;
    if(flag==true) return;
    if(tree==0) {
        flag=true;
        new_node=new struct Tree();
        init(new_node);
        strcpy(new_node->name,name);
        new_node->num++;;
        if(parent==0) root=new_node;
        else 
        {
            if(strcmp(new_node->name,parent->name)>0)
            {
                parent->r=new_node;
            }
            else 
                parent->l=new_node;
            new_node->p=parent;
        }
        return;
    } 
    else 
    {
        if(strcmp(tree->name,name)==0) {tree->num++;flag=true;return;}
        else if(strcmp(tree->name,name)>0)
        {
            add_num(name,tree->l,tree);
        }
        else 
        {
            add_num(name,tree->r,tree);
        }
    }
}

删除节点:

删除节点操作比较复杂,需要进行分类讨论。当带删除节点不存左右儿子时,可以直接删掉;如果不同时存在左右儿子,假设存在左儿子,则删除节点后将其儿子作为其父亲的左儿子;

如果同时存在左右儿子,则需要找到其后继结点(大于他的最小节点),将其值拷贝到待删除节点位置,并且删除其后继结点(其后继结点不可能同时存在左右儿子!)

寻找后继结点的方法:如果其右子树不为空,则寻找右子树中的最小值,即查找右子树中最左边的节点值便可;如果其右子树为空,则其后继结点可能为当前节点的某一级的祖先,因此,一直向上循环查找,直到当前节点为父节点的左儿子为止,注意当前节点也是不断向上更新的。

寻找后继结点的代码:

struct Tree* successor(struct Tree *tree)
{
    struct Tree *temp,*temp1;
    if(tree->r!=0) return find_min(tree->r);
    temp1=tree;
    temp=tree->p;
    while(temp!=0&&temp->r==temp1)
    {
        temp1=temp;
        temp=temp->p;
    }
    if(temp==0) return tree; //如果不存在后继则返回自身
    else return temp;        //否则返回后继结点
}

删除节点的代码:(这里删除的是最小节点)

struct Tree* delete_min()
{
    struct Tree * tree=find_min(root); //找到value最小的那个节点
    struct Tree * temp1,*temp2;
    if(tree->l==0||tree->r==0)         //如果左子树或者右子树不存在
        temp1=tree;
    else temp1=successor(tree);       //如果存在左右儿子,则找到后继结点
    if(temp1->l!=0) temp2=temp1->l;
    else temp2=temp1->r;
    if(temp2!=0) temp2->p=temp1->p;
    if(temp1->p==0) root=temp2;       //
    else if(temp1==temp1->p->l) temp1->p->l=temp2;
    else temp1->p->r=temp2;
    if(temp1!=tree) tree->num=temp1->num;
    return temp1;
}

寻找最小值: 其实很简单,就是找整棵树的最左边的节点!

struct Tree* find_min(struct Tree *tree)
{
    if(tree->l!=0) return find_min(tree->l);
    else return tree;
}

最后,输出树也是很简单的递归,比如按照中序输出:

void search(struct Tree *tree)
{
    if(tree!=0)
    {
        printf("%s\n",tree->name);
        if(tree->l!=0)  search(tree->l);
        else if(tree->r!=0) search(tree->r);
    
    }
}

以上是链表形式的二叉搜索树的一些基本操作,以作备忘。

本文地址:http://www.nowamagic.net/librarys/veda/detail/206,欢迎访问原出处。


推荐阅读
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文介绍如何利用动态规划算法解决经典的0-1背包问题。通过具体实例和代码实现,详细解释了在给定容量的背包中选择若干物品以最大化总价值的过程。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文探讨如何设计一个安全的加密和验证算法,确保生成的密码具有高随机性和低重复率,并提供相应的验证机制。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 在金融和会计领域,准确无误地填写票据和结算凭证至关重要。这些文件不仅是支付结算和现金收付的重要依据,还直接关系到交易的安全性和准确性。本文介绍了一种使用C语言实现小写金额转换为大写金额的方法,确保数据的标准化和规范化。 ... [详细]
  • 在给定的数组中,除了一个数字外,其他所有数字都是相同的。任务是找到这个唯一的不同数字。例如,findUniq([1, 1, 1, 2, 1, 1]) 返回 2,findUniq([0, 0, 0.55, 0, 0]) 返回 0.55。 ... [详细]
  • 本文探讨了卷积神经网络(CNN)中感受野的概念及其与锚框(anchor box)的关系。感受野定义了特征图上每个像素点对应的输入图像区域大小,而锚框则是在每个像素中心生成的多个不同尺寸和宽高比的边界框。两者在目标检测任务中起到关键作用。 ... [详细]
  • 网络攻防实战:从HTTP到HTTPS的演变
    本文通过一系列日记记录了从发现漏洞到逐步加强安全措施的过程,探讨了如何应对网络攻击并最终实现全面的安全防护。 ... [详细]
author-avatar
fengfeng
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有