热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

多线程编程学习六(Java中的阻塞队列).

介绍阻塞队列(BlockingQueue)是指当队列满时,队列会阻塞插入元素的线程,直到队列不满;当队列空时,队列会阻塞获得元素的线程,直到队列变非空。阻塞队列就是生产者用来存放元

介绍

阻塞队列(BlockingQueue)是指当队列满时,队列会阻塞插入元素的线程,直到队列不满;当队列空时,队列会阻塞获得元素的线程,直到队列变非空。阻塞队列就是生产者用来存放元素、消费者用来获取元素的容器。

当线程 插入/获取 动作由于队列 满/空 阻塞后,队列也提供了一些机制去处理,或抛出异常,或返回特殊值,或者线程一直等待...

方法/处理方式 抛出异常 返回特殊值 一直阻塞 超时退出
插入方法 add(e) offer(e) put(e) offer(e, timeout, unit)
移除方法 remove(o) poll() take() poll(timeout, unit)
检查方法 element() peek() — 不移除元素 不可用 不可用

tips: 如果是***阻塞队列,则 put 方法永远不会被阻塞;offer 方法始终返回 true。

Java 中的阻塞队列:

ArrayBlockingQueue

ArrayBlockingQueue 是一个用数组实现的有界阻塞队列。此队列按照先进先出(FIFO)的原则对元素进行排序,默认情况下不保证线程公平的访问。

通过可重入的独占锁 ReentrantLock 来控制并发,Condition 来实现阻塞。

public class ArrayBlockingQueueTest {

    /**
     * 1. 由于是有界阻塞队列,需要设置初始大小
     * 2. 默认不保证阻塞线程的公平访问,可设置公平性
     */
    private static ArrayBlockingQueue QUEUE = new ArrayBlockingQueue<>(2, true);

    public static void main(String[] args) throws InterruptedException {

        Thread put = new Thread(() -> {
            // 3. 尝试插入元素
            try {
                QUEUE.put("java");
                QUEUE.put("Javascript");
                // 4. 元素已满,会阻塞线程
                QUEUE.put("c++");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        put.start();
        Thread take = new Thread(() -> {
            try {
                // 5. 获取一个元素
                System.out.println(QUEUE.take());
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        take.start();
        // 6 Javascript、c++
        System.out.println(QUEUE.take());
        System.out.println(QUEUE.take());
    }
}

LinkedBlockingQueue

LinkedBlockingQueue 是一个用单向链表实现的有界阻塞队列。此队列的默认和最大长度为 Integer.MAX_VALUE。此队列按照先进先出的原则对元素进行排序。

和 ArrayBlockingQueue 一样,采用 ReentrantLock 来控制并发,不同的是它使用了两个独占锁来控制消费和生产,通过 takeLock 和 putLock 两个锁来控制生产和消费,互不干扰,只要队列未满,生产线程可以一直生产;只要队列不空,消费线程可以一直消费,不会相互因为独占锁而阻塞。

tips:因为使用了双锁,避免并发计算不准确,使用了一个 AtomicInteger 变量统计元素总量。

LinkedBlockingDeque

LinkedBlockingDeque 是一个由双向链表结构组成的有界阻塞队列,可以从队列的两端插入和移出元素。它实现了BlockingDeque接口,多了addFirst、addLast、offerFirst、offerLast、peekFirst和peekLast等方法,以 First 单词结尾的方法,表示插入、获取或移除双端队列的第一个元素。以 Last 单词结尾的方法,表示插入、获取或移除双端队列的最后一个元素。

LinkedBlockingDeque 的 Node 实现多了指向前一个节点的变量 prev,以此实现双向队列。并发控制上和 ArrayBlockingQueue 类似,采用单个 ReentrantLock 来控制并发。因为双端队列头尾都可以消费和生产,所以使用了一个共享锁。

双向阻塞队列可以运用在“工作窃取”模式中。

public class LinkedBlockingDequeTest {

    private static LinkedBlockingDeque DEQUE = new LinkedBlockingDeque<>(2);

    public static void main(String[] args) {
        DEQUE.addFirst("java");
        DEQUE.addFirst("c++");
        // java
        System.out.println(DEQUE.peekLast());
        // java
        System.out.println(DEQUE.pollLast());
        DEQUE.addLast("php");
        // c++
        System.out.println(DEQUE.pollFirst());
    }
}

tips: take() 方法调用的是 takeFirst(),使用时候需注意。

PriorityBlockingQueue

PriorityBlockingQueue 是一个底层由数组实现的***阻塞队列,并带有排序功能。由于是***队列,所以插入永远不会被阻塞。默认情况下元素采取自然顺序升序排列。也可以自定义类实现 compareTo()方法来指定元素排序规则,或者初始化 PriorityBlockingQueue 时,指定构造参数 Comparator 来对元素进行排序。

底层同样采用 ReentrantLock 来控制并发,由于只有获取会阻塞,所以只采用一个Condition(只通知消费)来实现。

public class PriorityBlockingQueueTest {

    private static PriorityBlockingQueue QUEUE = new PriorityBlockingQueue<>();

    public static void main(String[] args) {
        QUEUE.add("java");
        QUEUE.add("Javascript");
        QUEUE.add("c++");
        QUEUE.add("python");
        QUEUE.add("php");
        Iterator it = QUEUE.iterator();
        while (it.hasNext()) {
            // c++  Javascript  java  python  php
            // 同优先级不保证排序顺序
            System.out.print(it.next() + "  ");
        }
    }
}

DelayQueue

DelayQueue 是一个支持延时获取元素的***阻塞队列。队列使用 PriorityQueue 来实现。队列中的元素必须实现 Delayed 接口,元素按延迟优先级排序,延迟时间短的排在前面,只有在延迟期满时才能从队列中提取元素。

和 PriorityBlockingQueue 相似,底层也是数组,采用一个 ReentrantLock 来控制并发。

应用场景:

  1. 缓存系统的设计:可以用 DelayQueue 保存缓存元素的有效期,使用一个线程循环查询 DelayQueue,一旦能从 DelayQueue 中获取元素时,表示缓存有效期到了。
  2. 定时任务调度:使用 DelayQueue 保存当天将会执行的任务和执行时间,一旦从 DelayQueue 中获取到任务就开始执行,比如 TimerQueue 就是使用 DelayQueue 实现的。
public class DelayElement implements Delayed, Runnable {

    private static final AtomicLong SEQUENCER = new AtomicLong();
    /**
     * 标识元素先后顺序
     */
    private final long sequenceNumber;
    /**
     * 延迟时间,单位纳秒
     */
    private long time;

    public DelayElement(long time) {
        this.time = System.nanoTime() + time;
        this.sequenceNumber = SEQUENCER.getAndIncrement();
    }

    @Override
    public long getDelay(TimeUnit unit) {
        return unit.convert(time - System.nanoTime(), NANOSECONDS);
    }

    @Override
    public int compareTo(Delayed other) {
        // compare zero if same object
        if (other == this) {
            return 0;
        }
        if (other instanceof DelayElement) {
            DelayElement x = (DelayElement) other;
            long diff = time - x.time;
            if (diff <0) {
                return -1;
            } else if (diff > 0) {
                return 1;
            } else if (sequenceNumber  0) ? 1 : 0;
    }

    @Override
    public void run() {
        System.out.println("sequenceNumber" + sequenceNumber);
    }

    @Override
    public String toString() {
        return "DelayElement{" + "sequenceNumber=" + sequenceNumber + ", time=" + time + '}';
    }
}
public class DelayQueueTest {

    private static DelayQueue QUEUE = new DelayQueue<>();

    public static void main(String[] args) {
        // 1. 添加 10 个参数
        for (int i = 1; i <10; i++) {
            // 2. 5 秒内随机延迟
            int nextInt = new Random().nextInt(5);
            long cOnvert= TimeUnit.NANOSECONDS.convert(nextInt, TimeUnit.SECONDS);
            QUEUE.offer(new DelayElement(convert));
        }
        // 3. 查询元素排序 —— 延迟短的排在前面
        Iterator iterator = QUEUE.iterator();
        while (iterator.hasNext()) {
            System.out.println(iterator.next());
        }
        // 4. 可观察到元素延迟输出
        while (!QUEUE.isEmpty()) {
            Thread thread = new Thread(QUEUE.poll());
            thread.start();
        }
    }
}

LinkedTransferQueue

LinkedTransferQueue是一个由链表结构组成的***阻塞TransferQueue队列。

并发控制上采用了大量的 CAS 操作,没有使用锁。

相对于其他阻塞队列,LinkedTransferQueue 多了 tryTransfer 和 transfer 方法。

  1. transfer : Transfers the element to a consumer, waiting if necessary to do so. 存入的元素必须等到有消费者消费才返回。
  2. tryTransfer:Transfers the element to a waiting consumer immediately, if possible. 如果有消费者正在等待消费元素,则把传入的元素传给消费者。否则立即返回 false,不用等到消费。

SynchronousQueue

SynchronousQueue 是一个不存储元素的阻塞队列。每一个 put 操作必须等待一个 take 操作,否则继续 put 操作会被阻塞。

SynchronousQueue 默认情况下线程采用非公平性策略访问队列,未使用锁,全部通过 CAS 操作来实现并发,吞吐量非常高,高于 LinkedBlockingQueue 和 ArrayBlockingQueue,非常适合用来处理一些高效的传递性场景。Executors.newCachedThreadPool() 就使用了 SynchronousQueue 进行任务传递。

public class SynchronousQueueTest {

    private static class SynchronousQueueProducer implements Runnable {

        private BlockingQueue blockingQueue;

        private SynchronousQueueProducer(BlockingQueue queue) {
            this.blockingQueue = queue;
        }

        @Override
        public void run() {
            while (true) {
                try {
                    String data = UUID.randomUUID().toString();
                    System.out.println(Thread.currentThread().getName() + " Put: " + data);
                    blockingQueue.put(data);
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
    private static class SynchronousQueueConsumer implements Runnable {

        private BlockingQueue blockingQueue;

        private SynchronousQueueConsumer(BlockingQueue queue) {
            this.blockingQueue = queue;
        }

        @Override
        public void run() {
            while (true) {
                try {
                    System.out.println(Thread.currentThread().getName() + " take(): " + blockingQueue.take());
                    Thread.sleep(2000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
    public static void main(String[] args) {

        final BlockingQueue synchrOnousQueue= new SynchronousQueue<>();
        SynchronousQueueProducer queueProducer = new SynchronousQueueProducer(synchronousQueue);
        new Thread(queueProducer, "producer - 1").start();
        SynchronousQueueConsumer queueConsumer1 = new SynchronousQueueConsumer(synchronousQueue);
        new Thread(queueConsumer1, "consumer — 1").start();
        SynchronousQueueConsumer queueConsumer2 = new SynchronousQueueConsumer(synchronousQueue);
        new Thread(queueConsumer2, "consumer — 2").start();
    }
}

 
 

  1. 参考书籍:《Java 并发编程的艺术》
  2. 参考博文:https://www.cnblogs.com/konck/p/9473677.html

推荐阅读
  • 使用 Azure Service Principal 和 Microsoft Graph API 获取 AAD 用户列表
    本文介绍了一段通用代码示例,该代码不仅能够操作 Azure Active Directory (AAD),还可以通过 Azure Service Principal 的授权访问和管理 Azure 订阅资源。Azure 的架构可以分为两个层级:AAD 和 Subscription。 ... [详细]
  • Explore a common issue encountered when implementing an OAuth 1.0a API, specifically the inability to encode null objects and how to resolve it. ... [详细]
  • Java 类成员初始化顺序与数组创建
    本文探讨了Java中类成员的初始化顺序、静态引入、可变参数以及finalize方法的应用。通过具体的代码示例,详细解释了这些概念及其在实际编程中的使用。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 深入解析Spring Cloud Ribbon负载均衡机制
    本文详细介绍了Spring Cloud中的Ribbon组件如何实现服务调用的负载均衡。通过分析其工作原理、源码结构及配置方式,帮助读者理解Ribbon在分布式系统中的重要作用。 ... [详细]
  • 本文详细介绍了如何构建一个高效的UI管理系统,集中处理UI页面的打开、关闭、层级管理和页面跳转等问题。通过UIManager统一管理外部切换逻辑,实现功能逻辑分散化和代码复用,支持多人协作开发。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 本文详细介绍了Java中org.w3c.dom.Text类的splitText()方法,通过多个代码示例展示了其实际应用。该方法用于将文本节点在指定位置拆分为两个节点,并保持在文档树中。 ... [详细]
  • 本文详细介绍了 Apache Jena 库中的 Txn.executeWrite 方法,通过多个实际代码示例展示了其在不同场景下的应用,帮助开发者更好地理解和使用该方法。 ... [详细]
  • 本文介绍了如何通过 Maven 依赖引入 SQLiteJDBC 和 HikariCP 包,从而在 Java 应用中高效地连接和操作 SQLite 数据库。文章提供了详细的代码示例,并解释了每个步骤的实现细节。 ... [详细]
  • 本文详细介绍了Java中的访问器(getter)和修改器(setter),探讨了它们在保护数据完整性、增强代码可维护性方面的重要作用。通过具体示例,展示了如何正确使用这些方法来控制类属性的访问和更新。 ... [详细]
  • 本文介绍如何使用阿里云的fastjson库解析包含时间戳、IP地址和参数等信息的JSON格式文本,并进行数据处理和保存。 ... [详细]
  • 题目Link题目学习link1题目学习link2题目学习link3%%%受益匪浅!-----&# ... [详细]
  • MQTT技术周报:硬件连接与协议解析
    本周开发笔记重点介绍了在新项目中使用MQTT协议进行硬件连接的技术细节,涵盖其特性、原理及实现步骤。 ... [详细]
author-avatar
小歆歆
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有