热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深入解析监督学习的核心概念与应用

本文深入探讨了监督学习的基本原理及其广泛应用。监督学习作为机器学习的重要分支,通过利用带有标签的训练数据,能够有效构建预测模型。文章详细解析了监督学习的关键概念,如特征选择、模型评估和过拟合问题,并介绍了其在图像识别、自然语言处理等领域的实际应用。

2019独角兽企业重金招聘Python工程师标准>>> hot3.png

机器学习分为监督学习,非监督学习,强化学习和深度学习。

监督学习,是从标记的训练数据来推断一个功能的机器学习任务。

比如,在家里教宝宝认识苹果和梨,你拿出四个苹果和四个梨,放桌子上教宝宝认识这些水果。这些苹果和梨就是已经标注好的数据。

然后指着苹果对宝宝说:“来,宝宝,往这看,这是苹果,来跟我念,苹——果——。”

“苹——果——。”

“好。”

然后又指着香蕉对宝宝说:“来,看这里,这是梨,来给我念,梨——。”

“梨——。”

依次把这些水果都教宝宝认一遍。这就是监督学习的训练过程,训练完成后还要做一下测试,看看宝宝是否都学习会了。

监督学习中,一般把数据分成两部分,一部分是学习数据,占总数据集的80%以上,一部分是测数据,占总数据集的20%一下。测试时,你从冰箱里拿出一个苹果和一个梨,问宝宝:“宝宝,这是什么呀?”。这就是监督学习的测试过程。

在测试中,宝宝把苹果认错了,你分析发现,原来你教宝宝的时候用的是红苹果,测试时,用的是青苹果。这说明你对数据划分的不合理,训练数据中应该包括红苹果和青苹果。

为了避免这个问题,在训练时,先把数据随机打乱,再把数据分成训练数据和测试数据。

其实在真正的监督学习中,学习过程类型与上面说的类似,只是在学习时,使用了一些算法,数据量级也是上百万,上千万,甚至上亿的。

为了训练出更好的机器学习模型,我们会先选择一个合适的机器学习算法,再为这个算法准备好不同的参数。

在训练时,我们把学习算法和参数结合起来,组合成一个模型。为选出一个最好的模型,我们会使用一些交叉验证法,计算出一个得分,哪个模型得分高就选哪个模型。

交叉验证法有很多种,我们一般使用K折交叉验证。K折交叉验证是把训练数据分成K份,然后依次拿出一份做为验证数据,其剩下他的K-1份数据做为训练数据,用来训练机器学习模型,训练完成后,再拿验证数据,测试模型得分。 这样循环执行K次,然后再把每次验证得分加一起算平均值,作为模型的得分,得分最高的模型,就是我们选取的模型。

然后再用测试数据测试我们选取的模型,看看它的正确率怎么样。

有时我们在训练时,得分很高,但是在测试时,正确率却很低。我们把这种现象叫过拟合。过拟合出现的原因是训练条件太苛刻了。比如,你在教宝宝认苹果的时候,拿出一个红苹果,对宝宝说:“宝宝,这是苹果,它的颜色的红的,上面还有个把。” 然后你再拿出来一个红色没把的苹果,他就不认识了。因为你教他的时候,条件太苛刻了,红色带把的苹果叫苹果。这就叫过拟合。

出现过拟合,那么我们就需要,调整参数,再重新训练。找到最好的模型,然后测试。直到测试的正确率满意为止。


转:https://my.oschina.net/u/587323/blog/1596840



推荐阅读
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 非线性门控感知器算法的实现与应用分析 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 在2019中国国际智能产业博览会上,百度董事长兼CEO李彦宏强调,人工智能应务实推进其在各行业的应用。随后,在“ABC SUMMIT 2019百度云智峰会”上,百度展示了通过“云+AI”推动AI工业化和产业智能化的最新成果。 ... [详细]
  • 在Windows系统中安装TensorFlow GPU版的详细指南与常见问题解决
    在Windows系统中安装TensorFlow GPU版是许多深度学习初学者面临的挑战。本文详细介绍了安装过程中的每一个步骤,并针对常见的问题提供了有效的解决方案。通过本文的指导,读者可以顺利地完成安装并避免常见的陷阱。 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 机器学习中的标准化缩放、最小-最大缩放及鲁棒缩放技术解析 ... [详细]
  • 在《Python编程基础》课程中,我们将深入探讨Python中的循环结构。通过详细解析for循环和while循环的语法与应用场景,帮助初学者掌握循环控制语句的核心概念和实际应用技巧。此外,还将介绍如何利用循环结构解决复杂问题,提高编程效率和代码可读性。 ... [详细]
  • 深入浅出解读奇异值分解,助你轻松掌握核心概念 ... [详细]
  • Hired网站最新发布的开发者调查显示,Python 语言继续受到开发者的广泛欢迎,而 PHP 则被评为最不受欢迎的语言。该报告基于 Hired 数据科学团队对 13 个城市中 9800 名开发者的调查数据,深入分析了当前编程语言的使用趋势和开发者偏好。此外,报告还探讨了其他热门语言如 JavaScript 和 Java 的表现,并提供了对技术招聘市场的洞见。 ... [详细]
  • 基于OpenCV的图像拼接技术实践与示例代码解析
    图像拼接技术在全景摄影中具有广泛应用,如手机全景拍摄功能,通过将多张照片根据其关联信息合成为一张完整图像。本文详细探讨了使用Python和OpenCV库实现图像拼接的具体方法,并提供了示例代码解析,帮助读者深入理解该技术的实现过程。 ... [详细]
author-avatar
霙昉蘖976
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有