热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

读写hive_重要|mr使用hcatalog读写hive表

企业中,由于领导们的要求,hive中有数据存储格式很多时候是会变的,比如为了优化将tsv,csv格式改为了parquet或者
企业中,由于领导们的要求,hive中有数据存储格式很多时候是会变的,比如为了优化将tsv,csv格式改为了parquet或者orcfile。那么这个时候假如是mr作业读取hive的表数据的话,我们又要重新去写mr并且重新部署。这个时候就很蛋疼。hcatalog帮我们解决了这个问题,有了它我们不用关心hive中数据的存储格式。详细信息请仔细阅读本文。本文主要是讲mapreduce使用HCatalog读写hive表。hcatalog使得hive的元数据可以很好的被其它hadoop工具使用,比如pig,mr和hive。HCatalog的表为用户提供了(HDFS)中数据的关系视图,并确保用户不必担心他们的数据存储在何处或采用何种格式,因此用户无需知道数据是否以RCFile格式存储, 文本文件或sequence 文件。它还提供通知服务,以便在仓库中有新数据可用时通知工作流工具(如Oozie)。HCatalog提供HCatInputFormat / HCatOutputFormat,使MapReduce用户能够在Hive的数据仓库中读/写数据。它允许用户只读取他们需要的表和列的分区。返回的记录格式是方便的列表格式,用户无需解析它们。下面我们举个简单的例子。在mapper类中,我们获取表schema并使用此schema信息来获取所需的列及其值。下面是map类。

public class onTimeMapper extends Mapper { @Override protected void map(WritableComparable key, HCatRecord value, org.apache.hadoop.mapreduce.Mapper.Context context) throws IOException, InterruptedException { // Get table schema HCatSchema schema = HCatBaseInputFormat.getTableSchema(context); Integer year = new Integer(value.getString("year", schema)); Integer month = new Integer(value.getString("month", schema)); Integer DayofMonth = value.getInteger("dayofmonth", schema); context.write(new IntPair(year, month), new IntWritable(DayofMonth)); }}

在reduce类中,会为将要写入hive表中的数据创建一个schema。

public class onTimeReducer extends Reducer {public void reduce (IntPair key, Iterable value, Context context) throws IOException, InterruptedException{ int count = 0; // records counter for particular year-month for (IntWritable s:value) { count++; } // define output record schema List columns = new ArrayList(3); columns.add(new HCatFieldSchema("year", HCatFieldSchema.Type.INT, "")); columns.add(new HCatFieldSchema("month", HCatFieldSchema.Type.INT, "")); columns.add(new HCatFieldSchema("flightCount", HCatFieldSchema.Type.INT,"")); HCatSchema schema = new HCatSchema(columns); HCatRecord record = new DefaultHCatRecord(3); record.setInteger("year", schema, key.getFirstInt()); record.set("month", schema, key.getSecondInt()); record.set("flightCount", schema, count); context.write(null, record);}}最后,创建driver类,并且表明输入输出schema和表信息。

public class onTimeDriver extends Configured implements Tool{ private static final Log log = LogFactory.getLog( onTimeDriver.class ); public int run( String[] args ) throws Exception{ Configuration conf = new Configuration(); Job job = new Job(conf, "OnTimeCount"); job.setJarByClass(onTimeDriver.class); job.setMapperClass(onTimeMapper.class); job.setReducerClass(onTimeReducer.class); HCatInputFormat.setInput(job, "airline", "ontimeperf"); job.setInputFormatClass(HCatInputFormat.class); job.setMapOutputKeyClass(IntPair.class); job.setMapOutputValueClass(IntWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(DefaultHCatRecord.class); job.setOutputFormatClass(HCatOutputFormat.class); HCatOutputFormat.setOutput(job, OutputJobInfo.create("airline", "flight_count", null)); HCatSchema s = HCatOutputFormat.getTableSchema(job); HCatOutputFormat.setSchema(job, s); return (job.waitForCompletion(true)? 0:1); } public static void main(String[] args) throws Exception{ int exitCode = ToolRunner.run(new onTimeDriver(), args); System.exit(exitCode);}}

当然,在跑上面写的代码之前,应该先在hive中创建输出表。

create table airline.flight_count(Year INT ,Month INT ,flightCount INT)ROW FORMAT DELIMITED FIELDS TERMINATED BY ','STORED AS TEXTFILE;可能会引起错误的地方是没有设置$HIVE_HOME.推荐阅读:Hive性能优化(全面)Hive鲜为人知的宝石-Hooks浪尖以案例聊聊spark 3.0 sql的动态分区裁剪dc4bb1c7f7ed39a927e563321ec8a487.png




推荐阅读
  • 本文介绍了如何在 MapReduce 作业中使用 SequenceFileOutputFormat 生成 SequenceFile 文件,并详细解释了 SequenceFile 的结构和用途。 ... [详细]
  • OBS Studio自动化实践:利用脚本批量生成录制场景
    本文探讨了如何利用OBS Studio进行高效录屏,并通过脚本实现场景的自动生成。适合对自动化办公感兴趣的读者。 ... [详细]
  • 自然语言处理(NLP)——LDA模型:对电商购物评论进行情感分析
    目录一、2020数学建模美赛C题简介需求评价内容提供数据二、解题思路三、LDA简介四、代码实现1.数据预处理1.1剔除无用信息1.1.1剔除掉不需要的列1.1.2找出无效评论并剔除 ... [详细]
  • Hadoop的文件操作位于包org.apache.hadoop.fs里面,能够进行新建、删除、修改等操作。比较重要的几个类:(1)Configurati ... [详细]
  • 在Effective Java第三版中,建议在方法返回类型中优先考虑使用Collection而非Stream,以提高代码的灵活性和兼容性。 ... [详细]
  • 本文介绍了如何在Linux系统中获取库源码,并在从源代码编译软件时收集所需的依赖项列表。 ... [详细]
  • 本文介绍了如何使用Flume从Linux文件系统收集日志并存储到HDFS,然后通过MapReduce清洗数据,使用Hive进行数据分析,并最终通过Sqoop将结果导出到MySQL数据库。 ... [详细]
  • 本文详细介绍了在 Ubuntu 系统上搭建 Hadoop 集群时遇到的 SSH 密钥认证问题及其解决方案。通过本文,读者可以了解如何在多台虚拟机之间实现无密码 SSH 登录,从而顺利启动 Hadoop 集群。 ... [详细]
  • Spark与HBase结合处理大规模流量数据结构设计
    本文将详细介绍如何利用Spark和HBase进行大规模流量数据的分析与处理,包括数据结构的设计和优化方法。 ... [详细]
  • 本文介绍如何使用 Python 的 DOM 和 SAX 方法解析 XML 文件,并通过示例展示了如何动态创建数据库表和处理大量数据的实时插入。 ... [详细]
  • 如何将Python与Excel高效结合:常用操作技巧解析
    本文深入探讨了如何将Python与Excel高效结合,涵盖了一系列实用的操作技巧。文章内容详尽,步骤清晰,注重细节处理,旨在帮助读者掌握Python与Excel之间的无缝对接方法,提升数据处理效率。 ... [详细]
  • 在List和Set集合中存储Object类型的数据元素 ... [详细]
  • 本文探讨了 Kafka 集群的高效部署与优化策略。首先介绍了 Kafka 的下载与安装步骤,包括从官方网站获取最新版本的压缩包并进行解压。随后详细讨论了集群配置的最佳实践,涵盖节点选择、网络优化和性能调优等方面,旨在提升系统的稳定性和处理能力。此外,还提供了常见的故障排查方法和监控方案,帮助运维人员更好地管理和维护 Kafka 集群。 ... [详细]
  • 2012年9月12日优酷土豆校园招聘笔试题目解析与备考指南
    2012年9月12日,优酷土豆校园招聘笔试题目解析与备考指南。在选择题部分,有一道题目涉及中国人的血型分布情况,具体为A型30%、B型20%、O型40%、AB型10%。若需确保在随机选取的样本中,至少有一人为B型血的概率不低于90%,则需要选取的最少人数是多少?该问题不仅考察了概率统计的基本知识,还要求考生具备一定的逻辑推理能力。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
author-avatar
000冷000
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有