热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

读写hive_重要|mr使用hcatalog读写hive表

企业中,由于领导们的要求,hive中有数据存储格式很多时候是会变的,比如为了优化将tsv,csv格式改为了parquet或者
企业中,由于领导们的要求,hive中有数据存储格式很多时候是会变的,比如为了优化将tsv,csv格式改为了parquet或者orcfile。那么这个时候假如是mr作业读取hive的表数据的话,我们又要重新去写mr并且重新部署。这个时候就很蛋疼。hcatalog帮我们解决了这个问题,有了它我们不用关心hive中数据的存储格式。详细信息请仔细阅读本文。本文主要是讲mapreduce使用HCatalog读写hive表。hcatalog使得hive的元数据可以很好的被其它hadoop工具使用,比如pig,mr和hive。HCatalog的表为用户提供了(HDFS)中数据的关系视图,并确保用户不必担心他们的数据存储在何处或采用何种格式,因此用户无需知道数据是否以RCFile格式存储, 文本文件或sequence 文件。它还提供通知服务,以便在仓库中有新数据可用时通知工作流工具(如Oozie)。HCatalog提供HCatInputFormat / HCatOutputFormat,使MapReduce用户能够在Hive的数据仓库中读/写数据。它允许用户只读取他们需要的表和列的分区。返回的记录格式是方便的列表格式,用户无需解析它们。下面我们举个简单的例子。在mapper类中,我们获取表schema并使用此schema信息来获取所需的列及其值。下面是map类。

public class onTimeMapper extends Mapper { @Override protected void map(WritableComparable key, HCatRecord value, org.apache.hadoop.mapreduce.Mapper.Context context) throws IOException, InterruptedException { // Get table schema HCatSchema schema = HCatBaseInputFormat.getTableSchema(context); Integer year = new Integer(value.getString("year", schema)); Integer month = new Integer(value.getString("month", schema)); Integer DayofMonth = value.getInteger("dayofmonth", schema); context.write(new IntPair(year, month), new IntWritable(DayofMonth)); }}

在reduce类中,会为将要写入hive表中的数据创建一个schema。

public class onTimeReducer extends Reducer {public void reduce (IntPair key, Iterable value, Context context) throws IOException, InterruptedException{ int count = 0; // records counter for particular year-month for (IntWritable s:value) { count++; } // define output record schema List columns = new ArrayList(3); columns.add(new HCatFieldSchema("year", HCatFieldSchema.Type.INT, "")); columns.add(new HCatFieldSchema("month", HCatFieldSchema.Type.INT, "")); columns.add(new HCatFieldSchema("flightCount", HCatFieldSchema.Type.INT,"")); HCatSchema schema = new HCatSchema(columns); HCatRecord record = new DefaultHCatRecord(3); record.setInteger("year", schema, key.getFirstInt()); record.set("month", schema, key.getSecondInt()); record.set("flightCount", schema, count); context.write(null, record);}}最后,创建driver类,并且表明输入输出schema和表信息。

public class onTimeDriver extends Configured implements Tool{ private static final Log log = LogFactory.getLog( onTimeDriver.class ); public int run( String[] args ) throws Exception{ Configuration conf = new Configuration(); Job job = new Job(conf, "OnTimeCount"); job.setJarByClass(onTimeDriver.class); job.setMapperClass(onTimeMapper.class); job.setReducerClass(onTimeReducer.class); HCatInputFormat.setInput(job, "airline", "ontimeperf"); job.setInputFormatClass(HCatInputFormat.class); job.setMapOutputKeyClass(IntPair.class); job.setMapOutputValueClass(IntWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(DefaultHCatRecord.class); job.setOutputFormatClass(HCatOutputFormat.class); HCatOutputFormat.setOutput(job, OutputJobInfo.create("airline", "flight_count", null)); HCatSchema s = HCatOutputFormat.getTableSchema(job); HCatOutputFormat.setSchema(job, s); return (job.waitForCompletion(true)? 0:1); } public static void main(String[] args) throws Exception{ int exitCode = ToolRunner.run(new onTimeDriver(), args); System.exit(exitCode);}}

当然,在跑上面写的代码之前,应该先在hive中创建输出表。

create table airline.flight_count(Year INT ,Month INT ,flightCount INT)ROW FORMAT DELIMITED FIELDS TERMINATED BY ','STORED AS TEXTFILE;可能会引起错误的地方是没有设置$HIVE_HOME.推荐阅读:Hive性能优化(全面)Hive鲜为人知的宝石-Hooks浪尖以案例聊聊spark 3.0 sql的动态分区裁剪dc4bb1c7f7ed39a927e563321ec8a487.png




推荐阅读
  • MapReduce原理是怎么剖析的
    这期内容当中小编将会给大家带来有关MapReduce原理是怎么剖析的,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。1 ... [详细]
  • 深入解析Hadoop的核心组件与工作原理
    本文详细介绍了Hadoop的三大核心组件:分布式文件系统HDFS、资源管理器YARN和分布式计算框架MapReduce。通过分析这些组件的工作机制,帮助读者更好地理解Hadoop的架构及其在大数据处理中的应用。 ... [详细]
  • 本文详细介绍如何使用 Apache Spark 执行基本任务,包括启动 Spark Shell、运行示例程序以及编写简单的 WordCount 程序。同时提供了参数配置的注意事项和优化建议。 ... [详细]
  • 本文旨在探讨如何利用决策树算法实现对男女性别的分类。通过引入信息熵和信息增益的概念,结合具体的数据集,详细介绍了决策树的构建过程,并展示了其在实际应用中的效果。 ... [详细]
  • addcslashes—以C语言风格使用反斜线转义字符串中的字符addslashes—使用反斜线引用字符串bin2hex—函数把包含数据的二进制字符串转换为十六进制值chop—rt ... [详细]
  • 本文详细探讨了如何在 SparkSQL 中创建 DataFrame,涵盖了从基本概念到具体实践的各种方法。作为持续学习的一部分,本文将持续更新以提供最新信息。 ... [详细]
  • 本文详细介绍了在Hive中创建表的基本语法,包括临时表、外部表的创建方法,以及如何设置表的各种属性和约束条件。 ... [详细]
  • 本文详细介绍如何使用 Python 集成微信支付的三种主要方式:Native 支付、APP 支付和 JSAPI 支付。每种方式适用于不同的应用场景,如 PC 网站、移动端应用和公众号内支付等。 ... [详细]
  • 当unique验证运到图片上传时
    2019独角兽企业重金招聘Python工程师标准model:public$imageFile;publicfunctionrules(){return[[[na ... [详细]
  • java文本编辑器,java文本编辑器设计思路
    java文本编辑器,java文本编辑器设计思路 ... [详细]
  • 主板市盈率、市净率及股息率的自动化抓取
    本文介绍了如何通过Python脚本自动从中国指数有限公司网站抓取主板的市盈率、市净率和股息率等关键财务指标,并将这些数据存储到CSV文件中。涉及的技术包括网页解析、正则表达式以及异常处理。 ... [详细]
  • 深入理解Vue.js:从入门到精通
    本文详细介绍了Vue.js的基础知识、安装方法、核心概念及实战案例,帮助开发者全面掌握这一流行的前端框架。 ... [详细]
  • 本文探讨了Hive作业中Map任务数量的确定方式,主要涉及HiveInputFormat和CombineHiveInputFormat两种InputFormat的分片计算逻辑。通过调整相关参数,可以有效控制Map任务的数量,进而优化Hive作业的性能。 ... [详细]
  • 前文|功能型_品读鸿蒙HDF架构
    前文|功能型_品读鸿蒙HDF架构 ... [详细]
  • Alluxio 1.5.0 版本发布:增强功能与优化
    Alluxio 1.5.0 开源版本引入了多项新特性和改进,旨在提升数据访问速度和系统互操作性。 ... [详细]
author-avatar
000冷000
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有