热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

豆瓣评分9.9!送你霸榜好书看懂Tensorflow2!

注:文末将送2本正版纸质图书!传说中的机器学习“四大名著”中最适合入门的一本——“蜥蜴书”新版来了!这本书的英文原版是美国亚马逊AI霸榜图

注:文末将送2本正版纸质图书!

传说中的机器学习“四大名著”中最适合入门的一本——“蜥蜴书”新版来了!

这本书的英文原版是美国亚马逊AI霸榜图书,在人工智能、计算机神经网络、计算机视觉和模式识别三大榜单中,均为榜首!

国内外好评率均超90%!

读者纷纷表示,希望能出中文版。

现在,中文版来了!

被国内外工程师们奉为“最强存在”的神书,闭眼入即可。

越早看,越受益!

如果你是是AI初学者,正在寻求一个切入点,那么强烈建议你把本书当作入门教材。

如果你是AI工程师,需要使用机器学习或者深度学习算法解决实际问题,可将本书当作实战手册,它可以让你了解深度学习的最新研究成果和实用技巧。

这本书能带给我什么?

对于想要踏入机器学习和深度学习领域的初学者和工程师而言,一本理论和实践相结合的书籍是必不可少的,本书就是这样一本书。

理论上讲,本书最大的特色就是有深度,覆盖面广,但是书中并没有太多复杂的数学公式推导,很容易看懂。这在现在很多机器学习书籍中是不多见的。

从实战来说,本书使用了当前热门的机器学习框架Scikit-Learn及深度学习框架 TensorFlow和Keras,每一章都配备相应的项目示例,代码的实操性和可读性非常好。

本书也是为有经验的工程师而写的,是一本实用指南。特别是附录 B 给出的机器学习项目清单,如果工业界想做一套机器学习的解决方案,完全可以按照这个清单去做。

我看过第一版了,还要买第二版吗?

需要。第二版基于最新的TensorFlow 2和新版Scikit-Learn全面升级,内容增加近一倍。作者对书中的代码和习题也进行了全面更新,帮你更快进阶,掌握业界最新研究成果。

此外,本书还得到了Keras之父的鼎力推荐,作者本人也是前谷歌工程师,机器学习资深顾问:

阅读体验如何?

本书保持了O'REILLY精品图书一贯的严谨、清晰风格,通过代码注释附注说明全面讲解知识点,配套GitHub代码、习题与答案,清楚明了

实拍视频介绍

学习是对自己最好的投资!一本好书是1024程序员节送自己的最好礼物!

点击下方链接,即可优惠购书,即刻发货!书到用时方恨少,赶紧入手“蜥蜴书”,动手练起来吧!

《机器学习实战:基于Scikit-Learn、Keras和TensorFlow(原书第2版)》

AI霸榜书重磅更新!“美亚”AI+神经网络+CV三大畅销榜首图书,基于TensorFlow 2和新版Scikit-Learn全面升级,内容增加近一倍!前谷歌工程师撰写,Keras之父和TensorFlow移动端负责人鼎力推荐,从实践出发,手把手教你从零开始搭建起一个神经网络。

【赠书福利】

本次为大家送出2本“新版蜥蜴书”!10月11日22点结束并开奖。中奖读者将被免费寄送!

参与方法:

1、文末点 在看 !

2、公众号后台、或者扫以下码,回复 168 ,参与抽奖!

也可直接长按下述购买二维码:


推荐阅读
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 专业人士如何做自媒体 ... [详细]
  • 非计算机专业的朋友如何拿下多个Offer
    大家好,我是归辰。秋招结束后,我已顺利入职,并应公子龙的邀请,分享一些秋招面试的心得体会,希望能帮助到学弟学妹们,让他们在未来的面试中更加顺利。 ... [详细]
  • 在2019中国国际智能产业博览会上,百度董事长兼CEO李彦宏强调,人工智能应务实推进其在各行业的应用。随后,在“ABC SUMMIT 2019百度云智峰会”上,百度展示了通过“云+AI”推动AI工业化和产业智能化的最新成果。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • Python与R语言在功能和应用场景上各有优势。尽管R语言在统计分析和数据可视化方面具有更强的专业性,但Python作为一种通用编程语言,适用于更广泛的领域,包括Web开发、自动化脚本和机器学习等。对于初学者而言,Python的学习曲线更为平缓,上手更加容易。此外,Python拥有庞大的社区支持和丰富的第三方库,使其在实际应用中更具灵活性和扩展性。 ... [详细]
  • 深入解析经典卷积神经网络及其实现代码
    深入解析经典卷积神经网络及其实现代码 ... [详细]
  • 图像分割技术在人工智能领域中扮演着关键角色,其中语义分割、实例分割和全景分割是三种主要的方法。本文对这三种分割技术进行了详细的对比分析,探讨了它们在不同应用场景中的优缺点和适用范围,为研究人员和从业者提供了有价值的参考。 ... [详细]
  • 表面缺陷检测数据集综述及GitHub开源项目推荐
    本文综述了表面缺陷检测领域的数据集,并推荐了多个GitHub上的开源项目。通过对现有文献和数据集的系统整理,为研究人员提供了全面的资源参考,有助于推动该领域的发展和技术进步。 ... [详细]
  • 不用蘑菇,不拾金币,我通过强化学习成功通关29关马里奥,创造全新纪录
    《超级马里奥兄弟》由任天堂于1985年首次发布,是一款经典的横版过关游戏,至今已在多个平台上售出超过5亿套。该游戏不仅勾起了许多玩家的童年回忆,也成为强化学习领域的热门研究对象。近日,通过先进的强化学习技术,研究人员成功让AI通关了29关,创造了新的纪录。这一成就不仅展示了强化学习在游戏领域的潜力,也为未来的人工智能应用提供了宝贵的经验。 ... [详细]
author-avatar
血流的风霜_565
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有