热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

动态规划之01背包和完全背包问题(力扣C++题解)

理论内容都在代码随想录了,这里我主要是自己写题解回顾,强烈推荐代码随想录代码随想录PDF,代码随想录百度网盘,代码随想录知识星球,代码随想录八股文PDF,代码随想录刷题路线,代码随

理论内容都在代码随想录了,这里我主要是自己写题解回顾,强烈推荐

代码随想录代码随想录PDF,代码随想录百度网盘,代码随想录知识星球,代码随想录八股文PDF,代码随想录刷题路线,代码随想录知识星球八股文https://www.programmercarl.com/%E8%83%8C%E5%8C%85%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%8001%E8%83%8C%E5%8C%85-1.html

 

目录

模板一:二维数组版本

 模板二:一维数组版本(滚动数组)

1:分割等和子集(01背包)

2:最后一块石头的重量 II(01背包)

3:目标和(组合问题)

 4:一和零

完全背包:

5:零钱兑换||(组合问题)

6:零钱兑换||||(排列总和)




模板一:二维数组版本

void test_2_wei_bag_problem1() {
vector weight = {1, 3, 4};
vector value = {15, 20, 30};
int bagweight = 4;
// 二维数组
vector> dp(weight.size(), vector(bagweight + 1, 0));
// 初始化
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}
// weight数组的大小 就是物品个数
for(int i = 1; i for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
if (j else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
cout <}
int main() {
test_2_wei_bag_problem1();
}

问题:


(1)初始化问题:不能随意的凭感觉的初始化为0,或初始化为1,要根据实际情况

当这个点是初始点时,将数据带入,并检查,因为这个点时所有点的基石

当这个点不为初始点时,一般初始化为0(防止覆盖后面递推得出的数据)

比如在这个模板中:将第一行全部初始化为value[0]

意义为:当背包容量>=1时,如果只放第一件物品,那么背包所得到的最大价值就是value[0]



 (2)for循环遍历顺序问题:

一般我们都是先正序遍历物品的重量,再正序遍历背包容量,但实际上,在二维数组中,这个顺序完全可以颠倒,即先正序遍历背包容量,再正序遍历物品的重量;

因为它们之间互相不会覆盖,所以不受影响,但是下面的一维数组就要考虑了



(3)递推公式问题:01背包模板递推公式:

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])

含义:dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

返回即返回dp[weight.size()-1][bagweight],也就是递推的最后一步

当不放入物品时:背包容量没有损失,最大价值等于上一个的价值(没有拿,价值不变)

当放入物品时:背包容量=背包容量-物品的重量,最大价值等于上一个的价值+新增物品的价值



 模板二:一维数组版本(滚动数组)

#include
#include
#include
#include
using namespace std;
void test()
{
vector weight = { 1, 3, 4 };
vector value = { 15, 20, 30 };
int bagweight = 4;
//核心是:物品重量作为底,将背包的最大容量作为天花板,将天花板依次--,直到正好等于底
//依次统计天花板降低时,dp[j]的最大价值
//之后再重新换一个底,重复上述步骤
vector dp(bagweight + 1, 0);
for (int i = 0; i {
for (int j = bagweight; j >= weight[i]; j--)//背包容量
{
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout <}
int main()
{
test();
return 0;
}
dp[4]=max(dp[4]),dp[4-1]+15)=max(dp[4],dp[3]+15) j=4
dp[3]=max(dp[3],dp[4-1]+15)=max(dp[3],dp[2]+15) j=3
dp[2]=max(dp[2],dp[1]+15) j=2 ->>
dp[1]=max(dp[1],dp[0]+15) j=1 ->> dp[1]=max(0,15)=15
dp[4]=max(dp[4],dp[4-3]+vaule[1])=max(dp[4],dp[1]+20)=max(0,15+20)=35
dp[3]=max(dp[3],dp[3-3]+value[1])=max(dp[3],dp[0]+20)=max(0,0+20)=20
dp[4]=max(dp[4],dp[0]+value[2]=max(35,30)=35

问题:


(1)遍历顺序问题:

这里与二维数组的遍历顺序不同,先正序遍历了物品的重量,再逆序遍历了背包的容量,原因是:逆序时你会发现在第一遍遍历时:我的dp[4]不会影响到dp[3],直到第一遍遍历快结束时,dp[1]才给了我们一个具体的数值,到第二遍遍历时,我们才是真正意义上的递推

由于比较难理解,我比较sha地把递推的过程都写了出来(在上面)


 接下来理解下被”影响“的含义:假设我的第二层是正序遍历

dp[1]=max(dp[1],dp[0]+15) j=1 ->> dp[1]=max(0,15)=15
dp[2]=max(dp[2],dp[1]+15) j=2 ->> dp[2]=max(0,30)=30
dp[3]=max(dp[3],dp[4-1]+15)=max(dp[3],dp[2]+15) dp[3]=45
dp[4]=max(dp[4]),dp[4-1]+15)=max(dp[4],dp[3]+15) dp[4]=60

你会发现:物品1被重复放进了背包,这与题目规定的:物品只有一件的条件相违背!

同时,两个for循环的先后顺序也不能颠倒


(2)初始化问题:

一开始是将数组全部初始化为0,经过一次遍历后,数组别重新修改为了15(value[0])



 (3)递推公式问题:

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);(很好理解:大过你就覆盖)

此时的dp[j]和上面的dp[i][j]中的dp[j]含义一样:当背包容量为j时,背包存储的最大价值





1:分割等和子集(01背包)

 思路解析:


这道题实质是将数组分为两部分:

(1)对数组进行求和,总和记录为sum

·····1如果sum为奇数,那么就证明sum无法被拆为两部分,return false;

·····2如果sum为偶数,那么用target=sum/2

(2)相当于只要证明容量为target的背包只要当容量满的时候,它的价值为target即可完成

对于数组中的数字大小,即是它的重量又是它的价值

递推公式为:dp[j]=max(dp[j],dp[j-nums[i]]+nums[i])

(3)判断->相当于(2)的话用代码表示即为:dp[target]==target-->return true;  else false;


class Solution {
public:
bool canPartition(vector& nums) {
int sum = 0;
vectordp(10001, 0);
for (int i = 0; i if (sum % 2) return false;
int target = sum / 2;
for (int i = 0; i {
for (int j = target; j >= nums[i]; j--)
{
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
}
}
if (dp[target] == target) return true;
return false;
}
};

问:为什么dp数组开10001这么大?

答:因为


  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100
  • 总和不会大于20000,背包最大只需要其中一半,+1是为了对齐,我们需要target这个下标



2:最后一块石头的重量 II(01背包)

 思路解析:


这道题很容易联想到将数组分为大小最为接近的两堆,以此得到最优值

(1)对数组进行求和,总和记录为sum

将target=sum/2  分为两半,target和sum-target

但是注意:当sum为偶数时,这两堆相等

当sum为奇数时,由于target=sum/2,向下取整,所以target比sum-target小

(2)既然是求剩下石头重量,那么我们只需让这两个相减即可,当然是大的-小的

所以我们就确定了最后一步:return (sum-dp[target])-dp[target];

接下来的目标就是求dp[target]

(3)递推公式

dp[j]=max(dp[j],dp[j-nums[i]]+nums[i])

同样的在数组中,数字的大小,即是它的价值也是它的重量


class Solution {
public:
int lastStoneWeightII(vector& nums) {
int sum = 0;
vector dp(15001, 0);
for (int i = 0; i int target = sum / 2;
for (int i = 0; i {
for (int j = target; j >= nums[i]; j--)
{
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
}
}
return sum - dp[target] - dp[target];
}
};

解释:dp的大小应该不用我过多解释了^ ^




3:目标和(组合问题)

 思路解析:


这道题与前两题不同的是:前两题求的是价值,这道题求是的数量

由于只有加减法:那么我们就假设加法的数量为x,总数为sum,那么减法的数量为sum-x

即有:x-(sum-x)=target,target为目标值

我们可以进行讨论:

如果总数sum

经过上式则可得x的表达式为:x=(target+sum)/2;

由于x必定为整数,所以target和sum的值必须为偶数

这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。

本题则是装满有几种方法。其实这就是一个组合问题了

递推公式为:dp[j] += dp[j - nums[i]]

dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法


int findTargetSumWays(vector& nums, int target) {
int sum = 0;
for (int i = 0; i if (abs(target) > sum) return 0;
if ((sum + target) % 2 == 1) return 0;
int bagsize = (sum + target) / 2;
vector dp(bagsize + 1, 0);
dp[0] = 1;
for (int i = 0; i {
for (int j = bagsize; j >= nums[i]; j--)
{
dp[j] += dp[j - nums[i]];
}
}
return dp[bagsize];
}

解释:关于dp的初始化:dp[0]=1,当容量为0时,填满它只有一种方法:不填

这么解释虽然很牵强,但是从递推公式我们可以看出,如果初始化为0,那么所有的结果均为0




 4:一和零

 思路解析:

题目的意思:让你返回满足这个条件的最长串

这道题有难…………,因为它的重量变为了两种,0的数量和1的数量,价值呢?字符串的个数

可以简单地理解为:重量是要消耗的,价值是我们想要的结果


(1)遍历整个大串,在大串中遍历小串,在小串中用字符去遍历,统计0和1的个数

(2)遍历顺序:最外层是大串(物品的重量),内层是(背包的容量)(有两个内层!)

(3)递推公式:因为这里是求最优(而不是3题的方法数),所以并非组合问题

dp[i][j]=max(dp[i][j],dp[i-zerosize][j-onesize]+1);


class Solution {
public:
int findMaxForm(vector& strs, int m, int n) {
vector> dp(m + 1, vector (n + 1, 0)); // 默认初始化0
for (string str : strs) { // 遍历物品
int OneNum= 0, zerOnum= 0;
for (char c : str) {
if (c == '0') zeroNum++;
else oneNum++;
}
for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!
for (int j = n; j >= oneNum; j--) {
dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
}
}
}
return dp[m][n];
}
};



完全背包:

(1)次数不同

与01背包不同的是,同一件物品,在01背包问题中,只能取1次,而在完全背包问题中,可取无数次(只要背包容量够)



(2)次数不同导致了遍历顺序不同

在01背包中,第二层的for循环我们逆序遍历背包的容量

在完全背包中,第二层的for循环,我们可以正序遍历背包的容量



 (3)组合问题和排序问题

组合问题的遍历方式:先物品再背包(都是正序)

排列问题的遍历方式:变背包再物品(都是正序)


 完全背包模板:

// 先遍历物品,在遍历背包
void test_CompletePack() {
vector weight = {1, 3, 4};
vector value = {15, 20, 30};
int bagWeight = 4;
vector dp(bagWeight + 1, 0);
for(int i = 0; i for(int j = weight[i]; j <= bagWeight; j++) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout <}
int main() {
test_CompletePack();
}



5:零钱兑换||(组合问题)

 思路解析:


不考虑顺序,求组合总数

由于是组合总数:所以遍历顺序是:先物品再背包

由于是组合总数:所以递推公式是:dp[j]=dp[j-nums[i]]


class Solution {
public:
int change(int amount, vector& coins) {
vector dp(amount + 1, 0);
dp[0] = 1;
for (int i = 0; i for (int j = coins[i]; j <= amount; j++) { // 遍历背包
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
};



6:零钱兑换||||(排列总和)

 思路解析:


这道题就是妥妥的排列总数题

由于是排列总数:所以遍历顺序为:先背包再物品

由于是排列总数:所以递推公式为:dp[i] += dp[i - nums[j]];(一摸一样)


class Solution {
public:
int combinationSum4(vector& nums, int target) {
vector dp(target + 1, 0);
dp[0] = 1;
for (int i = 0; i <= target; i++) { // 遍历背包
for (int j = 0; j if (i - nums[j] >= 0 ) {
dp[i] += dp[i - nums[j]];
}
}
}
return dp[target];
}
};

解释:防止溢出我把dp的类型换为了unsigned int,期间我试过了int,long long都会溢出

索性换为了unsigned int,没想到居然过了^ ^

题目数据保证答案符合 32 位整数范围

等我问大佬清楚了,再来补充^ ^



推荐阅读
  • 在学习了Splay树的基本查找功能后,可能会觉得它与普通的二叉查找树没有太大的区别,仅仅是通过splay操作减少了时间开销。然而,Splay树之所以被誉为“序列之王”,主要在于其强大的区间操作能力。 ... [详细]
  • selenium通过JS语法操作页面元素
    做过web测试的小伙伴们都知道,web元素现在很多是JS写的,那么既然是JS写的,可以通过JS语言去操作页面,来帮助我们操作一些selenium不能覆盖的功能。问题来了我们能否通过 ... [详细]
  • STM32代码编写STM32端不需要写关于连接MQTT服务器的代码,连接的工作交给ESP8266来做,STM32只需要通过串口接收和发送数据,间接的与服务器交互。串口三配置串口一已 ... [详细]
  • 一、使用Microsoft.Office.Interop.Excel.DLL需要安装Office代码如下:2publicstaticboolExportExcel(S ... [详细]
  • 本文介绍了使用Python和C语言编写程序来计算一个给定数值的平方根的方法。通过迭代算法,我们能够精确地得到所需的结果。 ... [详细]
  • Canopy环境安装与使用指南
    《利用Python进行数据分析》一书推荐使用EPDFree版本的环境,然而随着技术的发展,目前更多人倾向于使用Canopy。本文将详细介绍Canopy的安装及使用方法。 ... [详细]
  • H5技术实现经典游戏《贪吃蛇》
    本文将分享一个使用HTML5技术实现的经典小游戏——《贪吃蛇》。通过H5技术,我们将探讨如何构建这款游戏的两种主要玩法:积分闯关和无尽模式。 ... [详细]
  • 利用 Calcurse 在 Linux 终端高效管理日程与任务
    对于喜爱使用 Linux 终端进行日常操作的系统管理员来说,Calcurse 提供了一种强大的方式来管理日程安排、待办事项及会议。本文将详细介绍如何在 Linux 上安装和使用 Calcurse,帮助用户更有效地组织工作。 ... [详细]
  • HTML:  将文件拖拽到此区域 ... [详细]
  • HTML前端开发:UINavigationController与页面间数据传递详解
    本文详细介绍了如何在HTML前端开发中利用UINavigationController进行页面管理和数据传递,适合初学者和有一定基础的开发者学习。 ... [详细]
  • Java连接MySQL数据库的方法及测试示例
    本文详细介绍了如何安装MySQL数据库,并通过Java编程语言实现与MySQL数据库的连接,包括环境搭建、数据库创建以及简单的查询操作。 ... [详细]
  • 本文介绍了如何使用 Python 的 Pyglet 库加载并显示图像。Pyglet 是一个用于开发图形用户界面应用的强大工具,特别适用于游戏和多媒体项目。 ... [详细]
  • 本文由chszs撰写,详细介绍了Apache Mina框架的核心开发流程及自定义协议处理方法。文章涵盖从创建IoService实例到协议编解码的具体步骤,适合希望深入了解Mina框架应用的开发者。 ... [详细]
  • 本文探讨了Linux环境下线程私有数据(Thread-Specific Data, TSD)的概念及其重要性,介绍了如何通过TSD技术避免多线程间全局变量冲突的问题,并提供了具体的实现方法和示例代码。 ... [详细]
  • SSE图像算法优化系列三:超高速导向滤波实现过程纪要(欢迎挑战)
    自从何凯明提出导向滤波后,因为其算法的简单性和有效性,该算法得到了广泛的应用,以至于新版的matlab都将其作为标准自带的函数之一了&#x ... [详细]
author-avatar
手机用户2602915825_387
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有