热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【动态规划】统计蚂蚁(ants)

题目描述蚂蚁山上有T(1

题目

描述


蚂蚁山上有T(1<=T<=1,000)种蚂蚁,标记为1..T,每种蚂蚁有N_i只蚂蚁(1<=N_i<=100),现有A(A<=5000)只蚂蚁,从中选出S,S+1,…,B(1<=S<=B<=A)只蚂蚁一共有多少种选法?
如有5只蚂蚁分别为{1,1,2,2,3},一共有3种蚂蚁,每一种蚂蚁的数量分别为2,2,1,以下是选不同数量蚂蚁的方法:
1个蚂蚁3种选法 : {1}{2}{3}
2个蚂蚁5种选法 : {1,1}{1,2}{1,3}{2,2}{2,3}
3个蚂蚁5种选法 : {1,1,2}{1,1,3}{1,2,2}{1,2,3}{2,2,3}
4个蚂蚁3种选法 : {1,2,2,3}{1,1,2,2}{1,1,2,3}
5个蚂蚁1种选法 : {1,1,2,2,3}
你的任务是从中选S..B只蚂蚁的方法总和。



输入


第一行: 4个空格隔开的整数: T, A, S和B;
第2到A+1行:每行一个整数表示蚂蚁的种类。



输出


输出从A只蚂蚁中选出S..B只蚂蚁的方法数,答案保留后6位。



样例输入

3 5 2 3
1
2
2
1
3

样例输出

10

大意

有 A 个 T 种物品,求取 \(i \in [S,B]\)共有多少种方法,答案取模 1000000


题解

首先用一个桶存储存每种蚂蚁的数量,设为 x[] 。


60分左右

动态规划,设 F[i][j] 为前 i 种物品选 j 个的方案数。则
\(F_{0,0}=1\)
\(F_{i,j}=\sum_{k=0}^{\min{(j,x_i)}} F_{i-1,j-k}\)
但是这样的时间复杂度是 \(O(T\sum x_i)\) ,会超时。


满分

上面的 F[i][] 都是从 F[i-1][] 得来的,因此我们想到了前缀和
设 S[i][j] 表示前 i 种物品取 0~i 个时的方案总和
前缀和我们并不陌生, \(S_{i,j}=S_{i,j-1}+F_{i,j}\)
那怎么求 F[i][j] 呢?
60 分做法时的公式得知,F[i][j] 等于 F[i-1][j-k] 到 F[i-1][j] 的和
这一段和就是 \(S_{i-1,j}-S_{i-1,j-k-1}\) ,也就是 \(S_{i-1,j}-S_{i-1,j-min(x[i],j)-1}\)
最后注意初始化
\(S[2\textit{~}A][0]=1\)
\(S[0][0\textit{~}T]=\min{(x[1],0\textit{~}T)+1}\)
就可以通过了


标程

#include
#define rg register int
using namespace std;
const int mod=1000000;
int n,m,l,r,t,x[5005],f[1005][5005],s[1005][5005],ans;
int main(){
freopen("ants.in","r",stdin);
freopen("ants.out","w",stdout);
scanf("%d%d%d%d",&n,&m,&l,&r);
for(rg i=1;i<=m;i++) scanf("%d",&t),++x[t];
for(rg i=0;i<=m;i++) s[1][i]=min(i,x[1])+1;
for(rg i=2;i<=n;i++){
s[i][0]=1;
for(rg j=1;j<=m;j++){
f[i][j]=(s[i-1][j]-s[i-1][j-min(x[i],j)-1])%mod;
s[i][j]=(s[i][j-1]+f[i][j])%mod;
}
}
for(rg i=l;i<=r;i++) ans=(ans+f[n][i])%mod;
printf("%d",ans);
}

【动态规划】统计蚂蚁 (ants)



推荐阅读
  • 本文总结了2018年的关键成就,包括职业变动、购车、考取驾照等重要事件,并分享了读书、工作、家庭和朋友方面的感悟。同时,展望2019年,制定了健康、软实力提升和技术学习的具体目标。 ... [详细]
  • 如何在WPS Office for Mac中调整Word文档的文字排列方向
    本文将详细介绍如何使用最新版WPS Office for Mac调整Word文档中的文字排列方向。通过这些步骤,用户可以轻松更改文本的水平或垂直排列方式,以满足不同的排版需求。 ... [详细]
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • 深入理解OAuth认证机制
    本文介绍了OAuth认证协议的核心概念及其工作原理。OAuth是一种开放标准,旨在为第三方应用提供安全的用户资源访问授权,同时确保用户的账户信息(如用户名和密码)不会暴露给第三方。 ... [详细]
  • 国内BI工具迎战国际巨头Tableau,稳步崛起
    尽管商业智能(BI)工具在中国的普及程度尚不及国际市场,但近年来,随着本土企业的持续创新和市场推广,国内主流BI工具正逐渐崭露头角。面对国际品牌如Tableau的强大竞争,国内BI工具通过不断优化产品和技术,赢得了越来越多用户的认可。 ... [详细]
  • 几何画板展示电场线与等势面的交互关系
    几何画板是一款功能强大的物理教学软件,具备丰富的绘图和度量工具。它不仅能够模拟物理实验过程,还能通过定量分析揭示物理现象背后的规律,尤其适用于难以在实际实验中展示的内容。本文将介绍如何使用几何画板演示电场线与等势面之间的关系。 ... [详细]
  • 本文介绍如何通过Windows批处理脚本定期检查并重启Java应用程序,确保其持续稳定运行。脚本每30分钟检查一次,并在需要时重启Java程序。同时,它会将任务结果发送到Redis。 ... [详细]
  • MySQL中枚举类型的所有可能值获取方法
    本文介绍了一种在MySQL数据库中查询枚举(ENUM)类型字段所有可能取值的方法,帮助开发者更好地理解和利用这一数据类型。 ... [详细]
  • 本文介绍如何在应用程序中使用文本输入框创建密码输入框,并通过设置掩码来隐藏用户输入的内容。我们将详细解释代码实现,并提供专业的补充说明。 ... [详细]
  • 本文介绍如何通过SQL查询从JDE(JD Edwards)系统中提取所有字典数据,涵盖关键表的关联和字段选择。具体包括F0004和F0005系列表的数据提取方法。 ... [详细]
  • 本文详细介绍了如何通过命令行启动MySQL服务,包括打开命令提示符窗口、进入MySQL的bin目录、输入正确的连接命令以及注意事项。文中还提供了更多相关命令的资源链接。 ... [详细]
  • 本文介绍如何使用 NSTimer 实现倒计时功能,详细讲解了初始化方法、参数配置以及具体实现步骤。通过示例代码展示如何创建和管理定时器,确保在指定时间间隔内执行特定任务。 ... [详细]
  • 本文介绍了在Windows环境下使用pydoc工具的方法,并详细解释了如何通过命令行和浏览器查看Python内置函数的文档。此外,还提供了关于raw_input和open函数的具体用法和功能说明。 ... [详细]
  • 本文介绍如何使用阿里云的fastjson库解析包含时间戳、IP地址和参数等信息的JSON格式文本,并进行数据处理和保存。 ... [详细]
  • MATLAB实现n条线段交点计算
    本文介绍了一种通过逐对比较线段来求解交点的简单算法。此外,还提到了一种基于排序的方法,但该方法较为复杂,尚未完全理解。文中详细描述了如何根据线段端点求交点,并判断交点是否在线段上。 ... [详细]
author-avatar
mobiledu2502905597
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有