热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

顶尖AI无法识别简单图案?因为人类已经无法理解它们了

计算机真的非常擅长识别物体。不过,一篇新论文将我们的关注引向了超智能算法完全无用的领域。这篇论文详细阐述了研究人员们如何用随机生成的简单图片愚弄最先进的深度神经网络。这些算法一次又

计算机真的非常擅长识别物体。不过,一篇新论文将我们的关注引向了超智能算法完全无用的领域。这篇论文详细阐述了研究人员们如何用随机生成的简单图片愚弄最先进的深度神经网络。这些算法一次又一次地将混合的抽象图形看成是鹦鹉、乒乓球拍、百吉饼和蝴蝶。

这些发现迫使我们了解一个很明显但极其重要的事实:计算机视觉和人类视觉根本不相同。然而,由于计算机越发依赖神经网络来学习观看,我们也不是很确定计算机视觉与人类视觉有何差异。正如开展研究的研究人员之一 Jeff Clune 所说的,在人工智能上,“我们可以在不知道如何获得结果的情况下得到结果。”

看看下面的黑黄相间的条纹,告诉我你看到了什么。没什么,对吧?不过,如果问最顶尖的人工智能同样的问题,它会告诉你,这个图案代表校车。它会说这一评估的有效度超过 99%。但这个答案 100% 错了。

54ab908186962.jpg

升级图片来愚弄人工智能

发现这些自训练算法为何如此聪明的方式之一是,找到它们愚笨的地方。在这个例子中,Clune 和博士生 Anh Nguyen 以及 Jason Yosinski 就是要看顶级图像识别神经网络是否易受误报影响。我们知道,计算机能识别考拉。但是否能让电脑把其他东西认作是考拉呢?

54ab90b46d935.jpg

为了找到这一问题的答案,这个团队通过进化算法生成了随机图像。基本上,这些算法生成了非常有效的视觉诱饵。在进化算法中,程序会生成一张图片,然后稍微改变一下图片(突变)。原始图片和复制后的图片都展示给经过 ImageNet 训练的神经网络。ImageNet 包含 130 万张图片,已经成为训练计算机视觉人工智能的必备资源。如果算法对复制后的照片更确定,研究人员们就会保留它,如此循环往复。否则他们会后退一步,然后再次尝试。Clune 表示道:“这不是适者生存,而是结果最漂亮的图片会生存”,或者更精确的说,计算机识别精度最高的图片会生存。

最终,这一技术生成了几十张神经网络认为精确度超过 99% 的照片。在你看来,这些照片看起来很不一样,就是一系列的蓝色和橙色波浪线,一堆椭圆,以及黄黑条纹等。但在人工智能看来,这些图片都是很明显的匹配:分别是金鱼、遥控器和校车。

一窥黑盒内景

在一些情况中,你能开始弄懂人工智能是如何被愚弄的。眯着眼睛看,校车看起来就像是由黄黑条纹相间组成。类似的,你可以看明白让人工智能认为是“帝王蝶”的随机生成图片确实能够组合出蝴蝶翅膀,以及“滑雪面具”图片确实看起来像是一张夸张的人脸。

但事情要复杂得多。研究人员们还发现,人工智能总是会被纯静态图片所愚弄。研究人员们使用略有不同的进化技术,生成了另一组图片。这些图片看起来几乎都一样,和坏掉的电视机上出现的画面差不多。然而,顶尖神经网络以 99% 的精度确认这些图片中是蜈蚣、猎豹和孔雀。

54ab912bf1cd5.jpg

对 Clune 来说,这些发现暗示神经网络通过多种视觉线索来识别物体。这些线索也许和人视觉线索很像(比如校车),也许不像。静态图片的结果显示,至少在有些时候,这些线索非常颗粒化。也许在训练中,神经网络注意到一条由“绿像素、绿像素、紫像素、绿像素”组成的线条在孔雀的照片中很常见。当 Clune 及其团队生成的照片恰巧有同样的线条,它们就触发了“孔雀”特征。研究人员们还能用完全不像的抽象图片触发“蜥蜴”特征,显示神经网络只依靠几项线索来识别物体,而且每一种线索都能触发确认的特征。

我们周密计划来愚弄这些算法的事实也指出了如今的人工智能中更大的真相:即便这些算法奏效,我们也并不总是知道它们起作用的原因。“这些模型变得非常大,也非常复杂,而且它们在自我学习”,身为美国怀俄明州立大学进化人工智能实验室负责人的 Clune 表示道:“神经网络中有数百万神经元,它们都各行其事。我们也不是很了解它们何以取得如此惊人的成就。”

类似的研究是试图逆向工程这些模型。他们想要了解人工智能的大致轮廓。Clune 解释道:“在过去一两年中,我们了解了很多神经网络黑盒内部的情况。这一切都还很模糊,但我们已经开始看到它了。”

不管怎样,为什么计算机的误判是个重要问题呢?

在本月早些时候,Clune 在蒙特利尔举办的神经信息处理系统大会上与同行研究人员们讨论了这些发现。此次大会聚集了一些人工智能领域最聪明的思考者们。大家的反应可归为两个阵营。一个阵营的人认为这项研究很有意义,这个阵营的人年纪要更大,在人工智能领域的经验更丰富。他们或许预测会出现不同的结果,但同时认为这些结果完全可以合理。

第二个阵营由没有花多少时间思考是什么让如今的计算机大脑运转的人组成,这些人对这一发现表示震惊。至少在最开始,他们很惊讶,这些强大的算法居然也能犯这么简单的错误。需要提醒的是,这些人还发表神经网络的论文,并且出现在今年最高级的人工智能大会上。

对 Clune 来说,两极分化的反应表明:人工智能领域正发生代际转变。几年之前,在人工智能领域工作的人在搭建人工智能。如今,神经网络已经足够好,研究人员们只是获取现有的东西来运用。Clune 表示:“在很多时候,你可以直接用这些算法来解决问题。人们涌入进来运用人工智能就像淘金热一样。”

这并不一定是坏事。但随着越来越多的东西建立在人工智能上,探索人工智能的缺陷也就变得越来越至关重要。如果算法仅凭一条像素线就断定一张图片是某种动物,想想色情照片通过安全搜索过滤器会有多容易。短期来说,Clune 希望这项研究会促进其他研究人员开发将图片全局纳入考虑的算法。换句话说,能让计算机视觉更像人类视觉的算法。

这项研究还让我们考虑这些缺陷的其他表现形式。比如面部识别也是以来同样的技术吗?Clune 表示:“一模一样,面部识别算法也很受同样的问题影响。”

你还可以想象这一发现的所有有趣应用。或许某种 3D 打印的鼻子就足以让电脑认为你是别人。也许穿上一层表面有几何形状的衣服,监控系统就会完全无视你。这一发现证实,随着计算机视觉使用率上升,破坏它的可能性也很随之上升。

往大点讲,随着我们进入自学习系统时代,这一发现也提醒了我们一个快速浮现的现实。现在我们仍然能控制我们创造的东西。但随着它们不断构建自身,我们很快就会发现,它们复杂得让我们看不透了。Clune表示:“人类再也看不懂这些计算机代码。它就像是一个由互动部分组成的经济体,智能从这中间浮现了出来。”

我们肯定会立刻使用这一智能。但在我们这么做时,我们是否能完全理解它就不得而知了。



推荐阅读
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • 网易严选Java开发面试:MySQL索引深度解析
    本文详细记录了网易严选Java开发岗位的面试经验,特别针对MySQL索引相关的技术问题进行了深入探讨。通过本文,读者可以了解面试官常问的索引问题及其背后的原理。 ... [详细]
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • 本文作者分享了在阿里巴巴获得实习offer的经历,包括五轮面试的详细内容和经验总结。其中四轮为技术面试,一轮为HR面试,涵盖了大量的Java技术和项目实践经验。 ... [详细]
  • 智能车间调度研究进展
    本文综述了基于强化学习的智能车间调度策略,探讨了车间调度问题在资源有限条件下的优化方法。通过数学规划、智能算法和强化学习等手段,解决了作业车间、流水车间和加工车间中的静态与动态调度挑战。重点讨论了不同场景下的求解方法及其应用前景。 ... [详细]
  • 深入解析Java虚拟机(JVM)架构与原理
    本文旨在为读者提供对Java虚拟机(JVM)的全面理解,涵盖其主要组成部分、工作原理及其在不同平台上的实现。通过详细探讨JVM的结构和内部机制,帮助开发者更好地掌握Java编程的核心技术。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文探讨了卷积神经网络(CNN)中感受野的概念及其与锚框(anchor box)的关系。感受野定义了特征图上每个像素点对应的输入图像区域大小,而锚框则是在每个像素中心生成的多个不同尺寸和宽高比的边界框。两者在目标检测任务中起到关键作用。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 本文详细介绍了macOS系统的核心组件,包括如何管理其安全特性——系统完整性保护(SIP),并探讨了不同版本的更新亮点。对于使用macOS系统的用户来说,了解这些信息有助于更好地管理和优化系统性能。 ... [详细]
  • 卷积神经网络(CNN)基础理论与架构解析
    本文介绍了卷积神经网络(CNN)的基本概念、常见结构及其各层的功能。重点讨论了LeNet-5、AlexNet、ZFNet、VGGNet和ResNet等经典模型,并详细解释了输入层、卷积层、激活层、池化层和全连接层的工作原理及优化方法。 ... [详细]
  • 2018年3月31日,CSDN、火星财经联合中关村区块链产业联盟等机构举办的2018区块链技术及应用峰会(BTA)核心分会场圆满举行。多位业内顶尖专家深入探讨了区块链的核心技术原理及其在实际业务中的应用。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • Python 工具推荐 | PyHubWeekly 第二十一期:提升命令行体验的五大工具
    本期 PyHubWeekly 为大家精选了 GitHub 上五个优秀的 Python 工具,涵盖金融数据可视化、终端美化、国际化支持、图像增强和远程 Shell 环境配置。欢迎关注并参与项目。 ... [详细]
author-avatar
无孔的鸟
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有