热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

调度算法的介绍及优缺点

调度算法是根据系统的资源分配策略所规定的资源分配算法。有的调度算法适用于作业调度,有的适用于进程调度,有的两者都适用。先了解几个术语到达时间、服务时间、开始时间完成时间、等待时间周转时
调度算法是根据系统的资源分配策略所规定的资源分配算法。有的调度算法适用于作业调度,有的适用于进程调度,有的两者都适用。

先了解几个术语
到达时间、服务时间、开始时间
完成时间、等待时间
周转时间:完成时间-到达时间
带权周转时间:周转时间/服务时间

一、先来先服务(FCFS)/先进先出(FIFO)调度算法
(1)概念:按照作业/进程进入系统的先后次序进行调度,先进入系统者先调度;即启动等待时间最长的作业/进程。是一种最简单的调度算法,即可用于作业调度,也可用于进程调度

(2) 先来先服务(先进先出)优缺点
* 比较有利于长作业(进程),而不利于短作业(进程)
* 有利于CPU繁忙型作业(进程) ,而不利于I/O繁忙型作业(进程)
* 用于批处理系统,不适于分时系统
这里写图片描述

二、短作业优先调度算法(SJF)

1、概念:从队列中选出一个估计运行时间最短的作业优先调度,即可用于作业调度,也可用于进程调度

2、SJ(P)F调度算法也存在不容忽视的缺点
*对长作业不利。严重的是,若一长作业(进程)进入系统的后备队列(就绪队列),由于调度程序总是优先调度那些(即使是后进来的)短作业(进程),将导致长作业(进程)长期不被调度——饥饿
*完全未考虑作业(进程)的紧迫程度,因而不能保证紧迫性作业(进程)会被及时处理
*由于作业(进程)的长短只是根据用户所提供的估计执行时间而定的,而用户又可能会有意或无意地缩短其作业的估计运行时间,致使该算法不一定能真正做到短作业优先调度。
这里写图片描述

三、高优先权调度算法
即可用于作业调度,也可用于进程调度

1、优先调度算法的类型
(1)非抢占式优先权调度算法
特点:系统一旦把处理机分配给就绪队列中优先权最高的进程后,该进程便一直执行下去,直至完成,或因发生某事件使该进程放弃处理机时,系统才将处理机重新分配给另一优先权最高的进程
主要用于批处理系统中,也可用于某些对实时性要求不严的实时系统中
(2)抢占式优先权调度算法
特点:把处理机分配给优先权最高的进程,但在执行期间,只要出现另一个优先权更高的进程,则进程调度程序就立即停止当前进程的执行,并将处理机分配给新到的优先权最高的进程
注意:只要系统中出现一个新的就绪进程,就进行优先权比较
该调度算法,能更好地满足紧迫作业的要求,故而常用于要求比较严格的实时系统中,以及对性能要求较高的批处理和分时系统中

2、优先权类型
高优先权调度算法,需要比较作业或进程的优先级,所以我们需要了解一下优先级
优先权分为静态优先权、动态优先权
(1)静态优先权
静态优先权在创建进程时确定,且在进程的整个运行期间保持不变。一般地,优先权是利用某一范围内的一个整数来表示的,例如,0∼7或0∼255, 又把该整数称为优先数
确定进程优先权的依据有如下三个方面:
进程类型:系统进程的优先权高于一般用户进程。
进程对资源的需求:如进程的估计执行时间及内存需要量少的进程,应赋予较高的优先权。
用户要求:由用户进程的紧迫程度和用户所付费用的多少来确定优先权。
(2)动态优先权
概念:在创建进程时赋予的优先权是随进程的推进或随其等待时间的增加而改变,以获得更好的调度性能。可规定,在就绪队列中的进程,随其等待时间的增长,其优先权以速率a提高
特征:具有相同优先权初值的进程,则最先进入就绪队列,其将因其动态优先权变得最高而优先获得处理机,此即FCFS算法
具有各不相同的优先权初值的就绪进程,则优先权初值低的进程,在等待了足够的时间后,其优先权便可能升为最高,从而可以获得处理机
注意:当采用抢占式优先权调度算法时,如果再规定当前进程的优先权以速率b下降,则可防止一个长作业长期地垄断处理机

四、高响应比优先调度算法
(1)概念:高响应比优先调度算法既考虑作业的执行时间也考虑作业的等待时间,综合了先来先服务和最短作业优先两种算法的特点。
该算法中的响应比是指作业等待时间与运行比值,响应比公式定义如下:
响应比 =(等待时间+要求服务时间)/ 要求服务时间,即RR=(w+s)/s=1+w/s,因此响应比一定是大于1的。
(2)优缺点
优点:等待时间相同的作业,则要求服务的时间愈短,其优先权愈高,——对短作业有利
要求服务的时间相同的作业,则等待时间愈长,其优先权愈高,——是先来先服务
长作业,优先权随等待时间的增加而提高,其等待时间足够长时,其优先权便可升到很高, 从而也可获得处理机——对长作业有利
是一种折衷,既照顾了短作业,又考虑了作业到达的先后次序,又不会使长作业长期得不到服务。
缺点:要进行响应比计算,增加了系统开销

五、简单的时间片轮转法(RR—Round Robin)
(1)概念:系统将所有的就绪进程按先来先服务的原则排成一个队列,每次调度时,把CPU分配给队首进程,并令其执行一个时间片;当执行的时间片用完时,由一个计时器发出时钟中断请求,调度程序便停止该进程的执行,并将其放就绪队列尾;然后,再把处理机分配给就绪队列中新的队首;时间片的大小从几ms到几百ms
(2)缺点:紧迫任务响应慢。
UNIX中采用:时间片+优先权
(3)时间片选取
太小,会频繁发生中断、进程上下文切换,增加系统开销,但利于短作业
太大,退化成FCFS
——时间片应该略大于一次典型交互的时间


推荐阅读
  • 性能测试中的关键监控指标与深入分析
    在软件性能测试中,关键监控指标的选取至关重要。主要目的包括:1. 评估系统的当前性能,确保其符合预期的性能标准;2. 发现软件性能瓶颈,定位潜在问题;3. 优化系统性能,提高用户体验。通过综合分析这些指标,可以全面了解系统的运行状态,为后续的性能改进提供科学依据。 ... [详细]
  • 深入解析Linux内核中的进程上下文切换机制
    在现代操作系统中,进程作为核心概念之一,负责管理和分配系统资源,如CPU和内存。深入了解Linux内核中的进程上下文切换机制,需要首先明确进程与程序的区别。进程是一个动态的执行流,而程序则是静态的数据和指令集合。进程上下文切换涉及保存当前进程的状态信息,并加载下一个进程的状态,以实现多任务处理。这一过程不仅影响系统的性能,还关系到资源的有效利用。通过分析Linux内核中的具体实现,可以更好地理解其背后的原理和技术细节。 ... [详细]
  • 双指针法在链表问题中应用广泛,能够高效解决多种经典问题,如合并两个有序链表、合并多个有序链表、查找倒数第k个节点等。本文将详细介绍这些应用场景及其解决方案。 ... [详细]
  • Java高并发与多线程(二):线程的实现方式详解
    本文将深入探讨Java中线程的三种主要实现方式,包括继承Thread类、实现Runnable接口和实现Callable接口,并分析它们之间的异同及其应用场景。 ... [详细]
  • 探讨如何在Go语言中高效地处理大规模切片的去重操作,特别是针对百万级数据量的场景。 ... [详细]
  • 本文详细介绍了数据库并发控制的基本概念、重要性和具体实现方法。并发控制是确保多个事务在同时操作数据库时保持数据一致性的关键机制。文章涵盖了锁机制、多版本并发控制(MVCC)、乐观并发控制和悲观并发控制等内容。 ... [详细]
  • 本文总结了一些开发中常见的问题及其解决方案,包括特性过滤器的使用、NuGet程序集版本冲突、线程存储、溢出检查、ThreadPool的最大线程数设置、Redis使用中的问题以及Task.Result和Task.GetAwaiter().GetResult()的区别。 ... [详细]
  • 本文是Java并发编程系列的开篇之作,将详细解析Java 1.5及以上版本中提供的并发工具。文章假设读者已经具备同步和易失性关键字的基本知识,重点介绍信号量机制的内部工作原理及其在实际开发中的应用。 ... [详细]
  • 深入解析 Synchronized 锁的升级机制及其在并发编程中的应用
    深入解析 Synchronized 锁的升级机制及其在并发编程中的应用 ... [详细]
  • Java Socket 关键参数详解与优化建议
    Java Socket 的 API 虽然被广泛使用,但其关键参数的用途却鲜为人知。本文详细解析了 Java Socket 中的重要参数,如 backlog 参数,它用于控制服务器等待连接请求的队列长度。此外,还探讨了其他参数如 SO_TIMEOUT、SO_REUSEADDR 等的配置方法及其对性能的影响,并提供了优化建议,帮助开发者提升网络通信的稳定性和效率。 ... [详细]
  • Python多线程编程技巧与实战应用详解 ... [详细]
  • 帝国CMS中的信息归档功能详解及其重要性
    本文详细解析了帝国CMS中的信息归档功能,并探讨了其在内容管理中的重要性。通过归档功能,用户可以有效地管理和组织大量内容,提高网站的运行效率和用户体验。此外,文章还介绍了如何利用该功能进行数据备份和恢复,确保网站数据的安全性和完整性。 ... [详细]
  • 深入解析Android 4.4中的Fence机制及其应用
    在Android 4.4中,Fence机制是处理缓冲区交换和同步问题的关键技术。该机制广泛应用于生产者-消费者模式中,确保了不同组件之间高效、安全的数据传输。通过深入解析Fence机制的工作原理和应用场景,本文探讨了其在系统性能优化和资源管理中的重要作用。 ... [详细]
  • 深入解析CAS机制:全面替代传统锁的底层原理与应用
    本文深入探讨了CAS(Compare-and-Swap)机制,分析了其作为传统锁的替代方案在并发控制中的优势与原理。CAS通过原子操作确保数据的一致性,避免了传统锁带来的性能瓶颈和死锁问题。文章详细解析了CAS的工作机制,并结合实际应用场景,展示了其在高并发环境下的高效性和可靠性。 ... [详细]
  • 如何利用Java 5 Executor框架高效构建和管理线程池
    Java 5 引入了 Executor 框架,为开发人员提供了一种高效管理和构建线程池的方法。该框架通过将任务提交与任务执行分离,简化了多线程编程的复杂性。利用 Executor 框架,开发人员可以更灵活地控制线程的创建、分配和管理,从而提高服务器端应用的性能和响应能力。此外,该框架还提供了多种线程池实现,如固定线程池、缓存线程池和单线程池,以适应不同的应用场景和需求。 ... [详细]
author-avatar
Imzgu_208
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有