热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

第7章YARNHA配置

目录7.1yarn-site.xm文件配置7.2测试YARN自动故障转移ResourceManager(RM)负责跟踪集群中的资源,以及调度应用程序(例如,MapRedu

目录

  • 7.1 yarn-site.xm文件配置
  • 7.2 测试YARN自动故障转移

ResourceManager (RM)负责跟踪集群中的资源,以及调度应用程序(例如,MapReduce作业)。在Hadoop 2.4之前,集群中只有一个ResourceManager,当其中一个宕机时,将影响整个集群。高可用性特性增加了冗余的形式,即一个主动/备用的ResourceManager对,以便可以进行故障转移。

YARN HA的架构如下图所示:

本例中,各节点的角色分配如下表所示:

节点 角色
centos01 ResourceManager NodeManager
centos02 ResourceManager NodeManager
centos03 NodeManager

下面将逐步讲解YARN HA的配置步骤。

7.1 yarn-site.xm文件配置

(1)修改yarn-site.xm文件,加入以下内容:

   
    
      yarn.resourcemanager.ha.enabled
      true
    
    
      yarn.resourcemanager.cluster-id
      cluster1
    
    
      yarn.resourcemanager.ha.rm-ids
      rm1,rm2
    
    
      yarn.resourcemanager.hostname.rm1
      centos01
    
    
      yarn.resourcemanager.hostname.rm2
      centos02
    
    
      yarn.resourcemanager.webapp.address.rm1
      centos01:8088
    
    
      yarn.resourcemanager.webapp.address.rm2
      centos02:8088
    
    
      yarn.resourcemanager.zk-address
      centos01:2181,centos02:2181,centos03:2181
         
    
      yarn.resourcemanager.recovery.enabled
      true
     
    
      yarn.resourcemanager.store.class
      org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore
    

上述配置参数解析:
yarn.resourcemanager.ha.enabled:开启RM HA功能。
yarn.resourcemanager.cluster-id:标识集群中的RM。如果设置该选项,需要确保所有的RMs在配置中都有自己的id。
yarn.resourcemanager.ha.rm-ids:RMs的逻辑id列表。可以自定义,此处设置为“rm1,rm2”。后面的配置将引用该id。
yarn.resourcemanager.hostname.rm1:指定RM对应的主机名。另外,可以设置RM的每个服务地址。
yarn.resourcemanager.webapp.address.rm1:指定RM的Web端访问地址。
yarn.resourcemanager.zk-address:指定集成的ZooKeeper的服务地址。
yarn.resourcemanager.recovery.enabled:启用RM重启的功能,默认为false。
yarn.resourcemanager.store.class:用于状态存储的类,默认为org.apache.hadoop.yarn.server.resourcemanager.recovery.FileSystemRMStateStore,基于Hadoop文件系统的实现。还可以为org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore,该类为基于ZooKeeper的实现。此处指定该类。

(2)yarn-site.xm文件配置好后,需要将其发送到集群中其它节点。
(3)接着上一章启动好的HDFS,继续进行启动YARN。
分别在centos01、centos02节点上执行以下命令,启动ResourceManager:

[hadoop@centos01 hadoop-2.7.1]$ sbin/yarn-daemon.sh start resourcemanager

分别在centos01、centos02、centos03节点上执行以下命令,启动nodemanager:

[hadoop@centos01 hadoop-2.7.1]$ sbin/yarn-daemon.sh start nodemanager

(4)YARN启动后,查看各节点Java进程:

[hadoop@centos01 hadoop-2.7.1]$ jps
3360 QuorumPeerMain
4080 DFSZKFailoverController
4321 NodeManager
4834 Jps
3908 JournalNode
3702 DataNode
4541 ResourceManager
3582 NameNode

[hadoop@centos02 hadoop-2.7.1]$ jps
4486 Jps
3815 DFSZKFailoverController
4071 NodeManager
4359 ResourceManager
3480 NameNode
3353 QuorumPeerMain
3657 JournalNode
3563 DataNode

[hadoop@centos03 hadoop-2.7.1]$ jps
3496 JournalNode
4104 Jps
3836 NodeManager
3293 QuorumPeerMain
3390 DataNode

此时浏览器输入地址http://centos01:8088 访问活动状态的ResourceManager,查看YARN的启动状态。如下图所示。

如果访问备份ResourceManager地址:http://centos02:8088 发现自动跳转到了地址http://centos01:8088。这是因为此时活动状态的ResourceManager在centos01节点上。访问备份节点的ResourceManager会自动跳转到活动节点。

7.2 测试YARN自动故障转移

在centos01节点上执行MapReduce默认的WordCount程序,当正在执行map阶段时,新开一个SSH Shell窗口,杀掉centos01的ResourceManager进程,观察程序执行过程。执行MapReduce默认的WordCount程序的命令如下:

[hadoop@centos01 hadoop-2.7.1]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar wordcount /input /output

执行结果如下:

[hadoop@centos01 hadoop-2.7.1]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar wordcount /input /output
18/03/16 10:48:22 INFO input.FileInputFormat: Total input paths to process : 1
18/03/16 10:48:22 INFO mapreduce.JobSubmitter: number of splits:1
18/03/16 10:48:23 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1521168402181_0001
18/03/16 10:48:23 INFO impl.YarnClientImpl: Submitted application application_1521168402181_0001
18/03/16 10:48:23 INFO mapreduce.Job: The url to track the job: http://centos01:8088/proxy/application_1521168402181_0001/
18/03/16 10:48:23 INFO mapreduce.Job: Running job: job_1521168402181_0001
18/03/16 10:48:56 INFO mapreduce.Job: Job job_1521168402181_0001 running in uber mode : false
18/03/16 10:48:57 INFO mapreduce.Job:  map 0% reduce 0%
18/03/16 10:50:21 INFO mapreduce.Job:  map 100% reduce 0%
18/03/16 10:50:32 INFO mapreduce.Job:  map 100% reduce 100%
18/03/16 10:50:36 INFO mapreduce.Job: Job job_1521168402181_0001 completed successfully
18/03/16 10:50:37 INFO mapreduce.Job: Counters: 49
        File System Counters
                FILE: Number of bytes read=1321
                FILE: Number of bytes written=239335
                FILE: Number of read operatiOns=0
                FILE: Number of large read operatiOns=0
                FILE: Number of write operatiOns=0
                HDFS: Number of bytes read=1094
                HDFS: Number of bytes written=971
                HDFS: Number of read operatiOns=6
                HDFS: Number of large read operatiOns=0
                HDFS: Number of write operatiOns=2
        Job Counters 
                Launched map tasks=1
                Launched reduce tasks=1
                Data-local map tasks=1
                Total time spent by all maps in occupied slots (ms)=14130
                Total time spent by all reduces in occupied slots (ms)=7851
                Total time spent by all map tasks (ms)=14130
                Total time spent by all reduce tasks (ms)=7851
                Total vcore-seconds taken by all map tasks=14130
                Total vcore-seconds taken by all reduce tasks=7851
                Total megabyte-seconds taken by all map tasks=14469120
                Total megabyte-seconds taken by all reduce tasks=8039424
        Map-Reduce Framework
                Map input records=29
                Map output records=109
                Map output bytes=1368
                Map output materialized bytes=1321
                Input split bytes=101
                Combine input records=109
                Combine output records=86
                Reduce input groups=86
                Reduce shuffle bytes=1321
                Reduce input records=86
                Reduce output records=86
                Spilled Records=172
                Shuffled Maps =1
                Failed Shuffles=0
                Merged Map outputs=1
                GC time elapsed (ms)=188
                CPU time spent (ms)=1560
                Physical memory (bytes) snapshot=278478848
                Virtual memory (bytes) snapshot=4195344384
                Total committed heap usage (bytes)=140480512
        Shuffle Errors
                BAD_ID=0
                COnNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters 
                Bytes Read=993
        File Output Format Counters 
                Bytes Written=971

从上述结果中可以看出,虽然ResourceManager进程被杀掉了,但是YARN仍然能够流畅的执行,说明自动故障转移功能生效了,ResourceManager遇到故障后,自动切换到了centos02节点上继续执行。此时浏览器访问备用ResourceManager的Web端地址http://centos02:8088发现可以成功访问了。显示任务成功执行完毕。

到此,YARN HA集群搭建完毕。

原创文章,转载请注明出处!!


推荐阅读
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • 前期Linux环境准备1.修改Linux主机名2.修改IP3.修改主机名和IP的映射关系4.关闭防火墙5.ssh免登陆6.安装JDK,配置环境变量等集群规划主机 IP安装软件运行进 ... [详细]
  • 在搭建Hadoop集群以处理大规模数据存储和频繁读取需求的过程中,经常会遇到各种配置难题。本文总结了作者在实际部署中遇到的典型问题,并提供了详细的解决方案,帮助读者避免常见的配置陷阱。通过这些经验分享,希望读者能够更加顺利地完成Hadoop集群的搭建和配置。 ... [详细]
  • 构建高可用性Spark分布式集群:大数据环境下的最佳实践
    在构建高可用性的Spark分布式集群过程中,确保所有节点之间的无密码登录是至关重要的一步。通过在每个节点上生成SSH密钥对(使用 `ssh-keygen -t rsa` 命令并保持默认设置),可以实现这一目标。此外,还需将生成的公钥分发到所有节点的 `~/.ssh/authorized_keys` 文件中,以确保节点间的无缝通信。为了进一步提升集群的稳定性和性能,建议采用负载均衡和故障恢复机制,并定期进行系统监控和维护。 ... [详细]
  • HBase在金融大数据迁移中的应用与挑战
    随着最后一台设备的下线,标志着超过10PB的HBase数据迁移项目顺利完成。目前,新的集群已在新机房稳定运行超过两个月,监控数据显示,新集群的查询响应时间显著降低,系统稳定性大幅提升。此外,数据消费的波动也变得更加平滑,整体性能得到了显著优化。 ... [详细]
  • 【clienteclipse集群提交运行】:客户端eclipse集群提交mapreduce代码1.需求:在master:8088上,有客户 ... [详细]
  • 本文介绍了 Go 语言中的高性能、可扩展、轻量级 Web 框架 Echo。Echo 框架简单易用,仅需几行代码即可启动一个高性能 HTTP 服务。 ... [详细]
  • 本文将介绍如何在混合开发(Hybrid)应用中实现Native与HTML5的交互,包括基本概念、学习目标以及具体的实现步骤。 ... [详细]
  • 包含phppdoerrorcode的词条 ... [详细]
  • 一、Tomcat安装后本身提供了一个server,端口配置默认是8080,对应目录为:..\Tomcat8.0\webapps二、Tomcat8.0配置多个端口,其实也就是给T ... [详细]
  • HTTP(HyperTextTransferProtocol)是超文本传输协议的缩写,它用于传送www方式的数据。HTTP协议采用了请求响应模型。客服端向服务器发送一 ... [详细]
  • 在将Web服务器和MySQL服务器分离的情况下,是否需要在Web服务器上安装MySQL?如果安装了MySQL,如何解决PHP连接MySQL服务器时出现的连接失败问题? ... [详细]
  • 用阿里云的免费 SSL 证书让网站从 HTTP 换成 HTTPS
    HTTP协议是不加密传输数据的,也就是用户跟你的网站之间传递数据有可能在途中被截获,破解传递的真实内容,所以使用不加密的HTTP的网站是不 ... [详细]
  • Nginx作为前端服务器时,Tomcat与Apache作为后端,War包应部署在何处? ... [详细]
  • 在开发过程中,我最初也依赖于功能全面但操作繁琐的集成开发环境(IDE),如Borland Delphi 和 Microsoft Visual Studio。然而,随着对高效开发的追求,我逐渐转向了更加轻量级和灵活的工具组合。通过 CLIfe,我构建了一个高度定制化的开发环境,不仅提高了代码编写效率,还简化了项目管理流程。这一配置结合了多种强大的命令行工具和插件,使我在日常开发中能够更加得心应手。 ... [详细]
author-avatar
乌海阿斯顿
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有