热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

第一章随机事件和概率

第一章  随机事件和概率§1.1随机事件和样本空间   概率论的任务是寻求随机现象发生的可能性,并对这种可能性的


第一章     随机事件和概率



§ 1.1 随机事件和样本空间第一章 随机事件和概率

    概率论的任务是寻求随机现象发生的可能性,并对这种可能性的大小给出度量方式及其算法

    随机试验是对随机现象的观察

        ① 可在相同条件下重复进行

        ② 每次试验可能出现不同的结果,最终出现哪种结果,试验之前不能确定

        ③事先知道试验可能出现的全部结果

    随机试验的每一个可能结果成为一个随机事件,简称事件

        事件分为基本事件和复合事件。又可分为必然事件(记做Ω)和不可能事件(记做

    样本空间:一个随机试验E产生的所有基本事件构成的集合称为样本空间(记做Ω),称其中元素为一个样本点,

    记做ω。 Ω={ω}。



§ 1.2 事件的关系和运算第一章 随机事件和概率

    ① 事件的包含与相等

    ② 事件的和(并)与积(交)

    ③ 互不相容事件与对立事件

        设A、B为两事件,若A和B不能同时发生,即AB=,则称A和B是互不相容事件或互斥事件

        若A、B互不相容,且他们的和为必然事件,即AB=及A∪B=Ω,则称A和B为对立事件或互为逆事件

    ④ 两事件的差

        设A、B为两事件,“事件A发生而事件B不发生”是一个事件,称为事件A和B的差事件,记做A-B

    事件的运算性质:

    ① 交换律:A∪B=B∪A,AB=BA;

    ② 结合律:A∪(B∪C)=(A∪B)∪C,(AB)C=A(BC);

    ③ 分配律:A(B∪C)=(AB)∪(AC),

               A∪(BC)=(A∪B)(A∪C);

    ④ 德摩根(De Morgan)对偶律:

        (A∪B)的逆=A的逆交B的逆;    AB的逆=A的逆∪B的逆



§ 1.3 事件的概率及其计算第一章 随机事件和概率

    概率的统计定义——定义1.1: P(A)≈n/N

        ① 非负性 ② 规范性 ③ 有限可加性

    古典型概率:① 有限性 ②等可能性

        P(A)=(A中所有样本点数)/Ω中样本点总数=m/n

        n的计数规则:加法原理、乘法原理

    超几何分布

    几何型概率



§ 1.4 概率的公理化定义第一章 随机事件和概率

    设有随机试验E,E的样本空间为Ω,记包括Ω在内的E的所有事件组成的集合族为£,若对£中的任一个事件A

    都能赋予一个实数P(A),且P(A)满足条件:

        ① 非负性:0<=P(A)<=1

        ② 规范性:P(Ω)=1

        ③ 可列可加性: 对两两互不相容的事件A,A,A…,有

                    P((i=1,)∑Ai)=(i=1,)∑P(Ai

            则称P(A)为事件A的概率

    性质1:不可能事件概率为0,即P()=0

    性质2: 有限可加性

    性质3:(逆事件)P(A的逆)=1-P(A)

    性质4: P(A-B)=P(A-AB)=P(A)-P(AB)

    性质5: (加法公式)设A、B、C为任意三个事件,P(A∪B)=P(A)+P(B)-P(AB)

            P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)



§ 1.5 条件概率和事件的独立性第一章 随机事件和概率

    条件概率:P(A|B)=P(AB)/P(B)

        非负性:0<=P(A|B)<=1

        规范性:P(Ω|B)=1

        可列可加性:

    P(A的逆|B)=1-P(A|B)

    乘法公式: P(AB)=P(A|B)P(B)  当P(B)>0时

                P(AB)=P(B|A)P(A)

    全概率公式(定理1.1):设样本空间Ω的一个划分为A,A,A…,且P(Ai)>0,i=1,2,...,n,则对任一事件B

    含于Ω,有    P(B)=(i=1,n)∑P(B|Ai)P(Ai)

    贝叶斯公式: 设A,A,A… 为一个样本空间Ω的一个划分,且P(Ai)>0,i=1,2,3,...,n.对任意的随机事件B

    含于Ω,若P(B)>0,则P(Ai|B)=P(B|Ai)P(Ai)/((j=1,n)P(B|Aj)P(Aj)


推荐阅读
  • 深入解析JVM垃圾收集器
    本文基于《深入理解Java虚拟机:JVM高级特性与最佳实践》第二版,详细探讨了JVM中不同类型的垃圾收集器及其工作原理。通过介绍各种垃圾收集器的特性和应用场景,帮助读者更好地理解和优化JVM内存管理。 ... [详细]
  • 使用Numpy实现无外部库依赖的双线性插值图像缩放
    本文介绍如何仅使用Numpy库,通过双线性插值方法实现图像的高效缩放,避免了对OpenCV等图像处理库的依赖。文中详细解释了算法原理,并提供了完整的代码示例。 ... [详细]
  • 本文将介绍如何使用 Go 语言编写和运行一个简单的“Hello, World!”程序。内容涵盖开发环境配置、代码结构解析及执行步骤。 ... [详细]
  • 线性Kalman滤波器在多自由度车辆悬架主动控制中的应用研究
    本文探讨了线性Kalman滤波器(LKF)在不同自由度(2、4、7)的车辆悬架系统中进行主动控制的应用。通过详细的仿真分析,展示了LKF在提升悬架性能方面的潜力,并总结了调参过程中的关键要点。 ... [详细]
  • 本文探讨了Hive中内部表和外部表的区别及其在HDFS上的路径映射,详细解释了两者的创建、加载及删除操作,并提供了查看表详细信息的方法。通过对比这两种表类型,帮助读者理解如何更好地管理和保护数据。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 本文介绍如何利用动态规划算法解决经典的0-1背包问题。通过具体实例和代码实现,详细解释了在给定容量的背包中选择若干物品以最大化总价值的过程。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文探讨如何设计一个安全的加密和验证算法,确保生成的密码具有高随机性和低重复率,并提供相应的验证机制。 ... [详细]
author-avatar
红糖小丸子QQEasyg
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有