热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

单纯形法求解线性规划

目前,运用最广的线性规划方法就是著名的单纯形方法。这种方法是G.B.Dantzig在1947年提出的。几十年的实践证明,单纯形方法的确是一种使用方便、行

目前,运用最广的线性规划方法就是著名的单纯形方法。这种方法是G.B.Dantzig在1947年提出的。几十年的实践证明,单纯形方法的确是一种使用方便、行之有效的重要算法。如今,它已经成为线性规划的中心内容。
单纯形法的基本思路是有选择地取(而不是枚举所有的)基本可行解,即是从可行域的一个顶点出发,沿着可行域的边界移到另一个相邻的顶点,要求新顶点的目标函数值不比原目标函数值差,如此迭代,直至找到最优解,或判定问题无界。


线性规划问题及其表示

线性规划问题可表示为如下形式:



这里写图片描述



变量满足约束条件(8.2)-(8.5)式的一组值称为线性规划问题的一个可行解。

所有可行解构成的集合称为线性规划问题的
可行区域

使目标函数取得极值的可行解称为
最优解

在最优解处目标函数的值称为
最优值

有些情况下可能不存在最优解。

通常有两种情况:

(1)根本没有可行解,即给定的约束条件之间是相互排斥的,可行区域为空集;

(2)目标函数没有极值,也就是说在n 维空间中的某个方向上,目标函数值可以无限增大,而仍满足约束条件,此时目标函数值无界。

例:


这里写图片描述

这个问题的解为 (x1,x2,x3,x4)=(0,3.5,4.5,1)最优值为16


线性规划基本定理

约束条件(8.2)-(8.5)中n个约束以等号满足的可行解称为线性规划问题的基本可行解。
n>m,则基本可行解中至少有nm个分量为0,也就是说,基本可行解中最多有m个分量非零。
线性规划基本定理:如果线性规划问题有最优解,则必有一基本可行最优解。
上述定理的重要意义在于,它把一个最优化问题转化为一个组合问题,即在(8.2) -(8.5)式的m+n个约束条件中,确定最优解应满足其中哪n个约束条件的问题。
由此可知,只要对各种不同的组合进行测试,并比较每种情况下的目标函数值,直到找到最优解。
Dantzig于1948年提出了线性规划问题的单纯形算法。
单纯形算法的特点是:
(1)只对约束条件的若干组合进行测试,测试的每一步都使目标函数的值增加;
(2)一般经过不大于mn次迭代就可求得最优解。


约束标准型线性规划问题的单纯形算法

当线性规划问题中没有不等式约束(8.2)和(8.4)式,而只有等式约束(8.3)和变量非负约束(8.5)时,称该线性规划问题具有标准形式。
先考察一类更特殊的标准形式线性规划问题。这一类线性规划问题中,每一个等式约束中,至少有一个变量的系数为正,且这个变量只在该约束中出现。
在每一约束方程中选择一个这样的变量,并以它作为变量求解该约束方程。这样选出来的变量称为左端变量或基本变量,其总数为m个。剩下的n-m个变量称为右端变量或非基本变量。
这一类特殊的标准形式线性规划问题称为约束标准型线性规划问题。
虽然约束标准型线性规划问题非常特殊,但是对于理解线性规划问题的单纯形算法是非常重要的。
任意一个线性规划问题可以转换为约束标准型线性规划问题。

例:


这里写图片描述


这里写图片描述

任何约束标准型线性规划问题,只要将所有非基本变量都置为0,从约束方程式中解出满足约束的基本变量的值,可求得一个基本可行解。
单纯形算法的基本思想就是从一个基本可行解出发,进行一系列的基本可行解的变换。
每次变换将一个非基本变量与一个基本变量互调位置,且保持当前的线性规划问题是一个与原问题完全等价的标准线性规划问题。
基本可行解x=(7,0,0,12,0,10)


单纯形法计算步骤如下:

这里写图片描述


单纯形算法的第1步:

选出使目标函数增加的非基本变量作为入基变量
查看单纯形表的第1行(也称之为z行)中标有非基本变量的各列中的值。
选出使目标函数增加的非基本变量作为入基变量。
z行中的正系数非基本变量都满足要求。
在上面单纯形表的z行中只有1列为正,即非基本变量相应的列,其值为3。
选取非基本变量x3作为入基变量。


单纯形算法的第2步:

选取离基变量。
在单纯形表中考察由第1步选出的入基变量所相应的列。
在一个基本变量变为负值之前,入基变量可以增到多大。

如果入基变量所在的列与基本变量所在行交叉处的表元素为负数,那么该元素将不受任何限制,相应的基本变量只会越变越大。
如果入基变量所在列的所有元素都是负值,则目标函数无界,已经得到了问题的无界解。
如果选出的列中有一个或多个元素为正数,要弄清是哪个数限制了入基变量值的增加。
受限的增加量可以用入基变量所在列的元素(称为主元素)来除主元素所在行的“常数列”(最左边的列)中元素而得到。所得到数值越小说明受到限制越多。
应该选取受到限制最多的基本变量作为离基变量,才能保证将入基变量与离基变量互调位置后,仍满足约束条件。
上例中,惟一的一个值为正的z行元素是3,它所在列中有2个正元素,即4和3。
min{124,103}=4,应该选取x4为离基变量;
入基变量x3取值为3。


单纯形算法的第3步:

转轴变换。
转轴变换的目的是将入基变量与离基变量互调位置。
给入基变量一个增值,使之成为基本变量;
修改离基变量,让入基变量所在列中,离基变量所在行的元素值减为零,而使之成为非基本变量。

解离基变量所相应的方程,将入基变量x3用离基变量x4表示为x112x2+14x4=3

再将其代入其他基本变量和所在的行中消去x3


x1+52x2+14x4+2x5=10x652x234x4+8x5=1

代入目标函数得到z=9+12x234x42x5
形成新单纯形表


这里写图片描述


单纯形算法的第4步:

转回并重复第1步,进一步改进目标函数值。
不断重复上述过程,直到z行的所有非基本变量系数都变成负值为止。这表明目标函数不可能再增加了。
在上面的单纯形表中,惟一的值为正的z行元素是非基本变量x2相应的列,其值为12
因此,选取非基本变量x2作为入基变量。
它所在列中有惟一的正元素52,即基本变量x1相应行的元素。
因此,选取x1为离基变量。
再经步骤3的转轴变换得到新单纯形表。

新单纯形表z行的所有非基本变量系数都变成负值,求解过程结束。
整个问题的解可以从最后一张单纯形表的常数列中读出。
目标函数的最大值为11;
最优解为:x=(0,4,5,0,0,11)



这里写图片描述


例子

这里写图片描述

上述方法严格按照步骤,虽然思路清晰,但过程冗长,不方便操作。下面用表格形式的单纯形方法来解上题。

在引进松弛变量,并将问题转化成标准形式后,建立初始单纯形表:
这里写图片描述
这里写图片描述
上述题目求解的是目标函数的min,下面再分享一道求解目标函数max的情况。两种情况极其类似,只是在判别式选择上的差异。
这里写图片描述


推荐阅读
  • 线性Kalman滤波器在多自由度车辆悬架主动控制中的应用研究
    本文探讨了线性Kalman滤波器(LKF)在不同自由度(2、4、7)的车辆悬架系统中进行主动控制的应用。通过详细的仿真分析,展示了LKF在提升悬架性能方面的潜力,并总结了调参过程中的关键要点。 ... [详细]
  • 本文探讨了Hive中内部表和外部表的区别及其在HDFS上的路径映射,详细解释了两者的创建、加载及删除操作,并提供了查看表详细信息的方法。通过对比这两种表类型,帮助读者理解如何更好地管理和保护数据。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文探讨如何设计一个安全的加密和验证算法,确保生成的密码具有高随机性和低重复率,并提供相应的验证机制。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 在金融和会计领域,准确无误地填写票据和结算凭证至关重要。这些文件不仅是支付结算和现金收付的重要依据,还直接关系到交易的安全性和准确性。本文介绍了一种使用C语言实现小写金额转换为大写金额的方法,确保数据的标准化和规范化。 ... [详细]
  • 在给定的数组中,除了一个数字外,其他所有数字都是相同的。任务是找到这个唯一的不同数字。例如,findUniq([1, 1, 1, 2, 1, 1]) 返回 2,findUniq([0, 0, 0.55, 0, 0]) 返回 0.55。 ... [详细]
  • 本文探讨了卷积神经网络(CNN)中感受野的概念及其与锚框(anchor box)的关系。感受野定义了特征图上每个像素点对应的输入图像区域大小,而锚框则是在每个像素中心生成的多个不同尺寸和宽高比的边界框。两者在目标检测任务中起到关键作用。 ... [详细]
  • 网络攻防实战:从HTTP到HTTPS的演变
    本文通过一系列日记记录了从发现漏洞到逐步加强安全措施的过程,探讨了如何应对网络攻击并最终实现全面的安全防护。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 深度学习理论解析与理解
    梯度方向指示函数值增加的方向,由各轴方向的偏导数综合而成,其模长表示函数值变化的速率。本文详细探讨了导数、偏导数、梯度等概念,并结合Softmax函数、卷积神经网络(CNN)中的卷积计算、权值共享及池化操作进行了深入分析。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 自学编程与计算机专业背景者的差异分析
    本文探讨了自学编程者和计算机专业毕业生在技能、知识结构及职业发展上的不同之处,结合实际案例分析两者的优势与劣势。 ... [详细]
author-avatar
0只0为0等0你0
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有