热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

大数据运维的工作职责

一.集群管理  大数据需要分布式系统,也就是集群:Hadoop,Hbase,Spark,Kafka,Redis等大数据生态圈组建。二.故障处理  1.商用硬件使用故障是常态。  

一.集群管理
    大数据需要分布式系统,也就是集群:Hadoop,Hbase,Spark,Kafka,Redis等大数据生态圈组建。

二.故障处理
    1>.商用硬件使用故障是常态。
    2>.区分故障等级,优先处理影响实时性业务的故障。

三.变更管理
    1>.以可控的方式,高效的完成变更工作;
    2>.包括配置管理和发布管理;

四.容量管理
    1>.存储空间,允许链接数等都是容量概念;
    2>.在多租户环境下,容量管理尤其重要;

五.性能调优
    1>.不同组建的性能概念不一样,如kafka注重吞吐量,Hbase注重实用性可用性;
    2>.需要对组建有深刻的理解

六.架构优化
    1>.优化大数据平台架构,支持平台能力和产品的不断迭代;
    2>.类似架构师的工作;

 

三.大数据运维所需的能力


一.DevOps
    DevOps(英文Development和Operations的组合)是一组过程,方法和系统的统称,用于促进开发(应用程序/软件工程),技术运营和质量保障(QA)部门之间的沟通,写作与整合。
二.硬件,OS,网络,安全的基础知识
    大数据平台和组建设计范围广,各种都需要懂一点,这些知识出问题的时候不可能问人,因为别人也有自己的工作要做。

三.脚本语言能力
    Shell,SQL(DDL),Python.Java(加分)

四.大数据各个组件知识
    设计思想。使用范围,底层架构,常用命令,常用配置或参数,常见问题处理方法。

五.工具能力
    Zabbix,Open Falcon,Ganglia,ELK等,企业自研工具。我推荐使用集群自带的工具。

六.Trouble shooting能力
    搜索能力(搜索引擎,stackoverflow等),java能力(异常堆栈要看得懂,最好能看懂源码),英文阅读能力。

七.意识,流程
    良好的意识,什么能做什么不能做。同用的流程如ITIL,各企业也有自己的流程。

 

四.大数据运维的主要工作


一.运维三板斧
    三板斧可以解决90%以上的故障处理工作。
1>.重启
    重启有问题的机器或经常,使其正常工作。
2>.切换
    主备切换或主主切换,链接正常工作的节点。
3>.查杀
    查杀有问题的进程,链接等。
4>.三板斧的问题
    第一:只能处理故障处理问题,不能解决性能调优,架构优化等问题;
    第二:只能治标,不能治本;
5>..大数据运维和传统运维的不同
    第一:传统运维面对的底层软硬件基本稳固,大数据运维面对的是商用硬件和复杂linux版本;
    第二:传统运维面对的是单机架构为主,大数据运维面对复杂的分布式架构;
    第三:传统运维大多维护闭源商业版系统,大数据运维通常面对开源系统,文档手册匮乏,对阅读源码要求高。
    第四:大数据运维对自动化工具的依赖大大增加;

二.Iaas层(基础设置及服务)运维工作
    一般中大型企业有自己的基础设施维护团队,这部分工作不会交给大数据运维来做。小公司可能需要大数据运维键值这部分工作,主要关注三个方面:
1>.硬件
    大数据系统大多使用廉价PC Server或虚拟机,硬件故障是常态,通过告警,日志,维护命令等识别故障,并支持硬件更换。
2>.存储
    大多使用PC Server挂本磁盘的存储方式,极少情况会使用SAN(存储区域网络)或NAS(网络附属存储),熟悉分区,格式化,巡检等基本操作。
3>.网络
    网络的配置变更更需要比较专业的知识,如有需要可学习CCNA,CCNP等认证课程,但网络硬件和配置出问题概率很低,主要关注丢包,延时。

三.HDFS运维工作
1>.容量管理
    第一:HDFS空间我使用超过80%要警惕,如果是多租户环境,租户的配额空间也能用完;
    第二:熟悉hdfs,fsck,distcp等常用命令,会使用DataNode均衡器;

2>.进程管理
    第一:NameNode的进程是重点
    第二:熟悉dfsadmin等Ingles。怎么做NameNode高可用。
3>.故障管理
    Hadoop最常见的故障就是硬盘损坏。
4>.配置管理
    hdfs-site.xml中的参数设置。

四.MapReduce运维工作
1>.进程管理
    第一:jobtracker进程故障概率比较低,有问题可以通过重启解决;
    第二:了解一下HA的做法;
2>.配置管理
    mapred-site.xml中的参数设置。

五.Yarn运维工作
1>.故障管理
    主要是当任务异常这中止时看日志排查,通茶故障原因会集中在资源问题,权限问题中的一种。
2>.进程管理
    ResourceManager主要是学会配置HA
    NodeManager进程挂掉不重要,重启即可。
3>.配置管理
    yarn-site.xml中的参数设置,主要分三块配置,scheduler的,ResourceManager的,NodeManager的。

六.Hive/Impala运维工作
1>.SQL问题排查
    第一:结果不对,主要原因可能是SQL错误,数据不存在,UDF错误等,需要靠经验排查
    第二:慢SQL,这类问题开发经常会找运维排查,有可能是劣势SQL,数据量大,也有可能是集群资源紧张;
2>.元数据管理
    Hive和Impala公用的元数据,存在关系型数据库中。

七.其它组件
    根据组件用途,特性,关注点的不用,运维工作也各不相同,如:
1>.HBase关注读写性能,服务的可用性
2>.Kafka关注吞吐量,负载均衡,消息不丢机制
3>.Flume关注屯度量,故障后的快速恢复

 

五.大数据运维技能概览

 

 

 

六.大数据运维职业素养


1>.人品
2>.严谨
3>.细心
4>.心态
5>.熟悉操作系统
6>.熟悉业务(开发)
7>.熟悉行业
8>.喜欢大数据生态圈
 


推荐阅读
  • 字节跳动深圳研发中心安全业务团队正在火热招募人才! ... [详细]
  • 阿里巴巴终面技术挑战:如何利用 UDP 实现 TCP 功能?
    在阿里巴巴的技术面试中,技术总监曾提出一道关于如何利用 UDP 实现 TCP 功能的问题。当时回答得不够理想,因此事后进行了详细总结。通过与总监的进一步交流,了解到这是一道常见的阿里面试题。面试官的主要目的是考察应聘者对 UDP 和 TCP 在原理上的差异的理解,以及如何通过 UDP 实现类似 TCP 的可靠传输机制。 ... [详细]
  • 深入理解Spark框架:RDD核心概念与操作详解
    RDD是Spark框架的核心计算模型,全称为弹性分布式数据集(Resilient Distributed Dataset)。本文详细解析了RDD的基本概念、特性及其在Spark中的关键操作,包括创建、转换和行动操作等,帮助读者深入理解Spark的工作原理和优化策略。通过具体示例和代码片段,进一步阐述了如何高效利用RDD进行大数据处理。 ... [详细]
  • 深入解析十大经典排序算法:动画演示、原理分析与代码实现
    本文深入探讨了十种经典的排序算法,不仅通过动画直观展示了每种算法的运行过程,还详细解析了其背后的原理与机制,并提供了相应的代码实现,帮助读者全面理解和掌握这些算法的核心要点。 ... [详细]
  • 本文详细介绍了如何使用OpenSSL自建CA证书的步骤,包括准备工作、生成CA证书、生成服务器待签证书以及证书签名等过程。 ... [详细]
  • 本文详细介绍了在 Ubuntu 系统上搭建 Hadoop 集群时遇到的 SSH 密钥认证问题及其解决方案。通过本文,读者可以了解如何在多台虚拟机之间实现无密码 SSH 登录,从而顺利启动 Hadoop 集群。 ... [详细]
  • 在多线程并发环境中,普通变量的操作往往是线程不安全的。本文通过一个简单的例子,展示了如何使用 AtomicInteger 类及其核心的 CAS 无锁算法来保证线程安全。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • ### 优化后的摘要本学习指南旨在帮助读者全面掌握 Bootstrap 前端框架的核心知识点与实战技巧。内容涵盖基础入门、核心功能和高级应用。第一章通过一个简单的“Hello World”示例,介绍 Bootstrap 的基本用法和快速上手方法。第二章深入探讨 Bootstrap 与 JSP 集成的细节,揭示两者结合的优势和应用场景。第三章则进一步讲解 Bootstrap 的高级特性,如响应式设计和组件定制,为开发者提供全方位的技术支持。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • 美团优选推荐系统架构师 L7/L8:算法与工程深度融合 ... [详细]
  • 修复一个 Bug 竟耗时两天?真的有那么复杂吗?
    修复一个 Bug 竟然耗费了两天时间?这背后究竟隐藏着怎样的复杂性?本文将深入探讨这个看似简单的 Bug 为何会如此棘手,从代码层面剖析问题根源,并分享解决过程中遇到的技术挑战和心得。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 本文介绍了如何在 Windows 系统上利用 Docker 构建一个包含 NGINX、PHP、MySQL、Redis 和 Elasticsearch 的集成开发环境。通过详细的步骤说明,帮助开发者快速搭建和配置这一复杂的技术栈,提升开发效率和环境一致性。 ... [详细]
  • 在Linux系统中,原本已安装了多个版本的Python 2,并且还安装了Anaconda,其中包含了Python 3。本文详细介绍了如何通过配置环境变量,使系统默认使用指定版本的Python,以便在不同版本之间轻松切换。此外,文章还提供了具体的实践步骤和注意事项,帮助用户高效地管理和使用不同版本的Python环境。 ... [详细]
author-avatar
手机用户2502911617_428
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有