热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

大数据学习笔记之四十三深度学习的基本方法

1)自动编码器1.1内涵是一个逐层的贪心算法,在每一次迭代中训练一层网络,然后使用一个类似于后向传播的算法对深度网络进行调优1.2思想

1)自动编码器

    1.1 内涵 

          是一个逐层的贪心算法,在每一次迭代中训练一层网络,然后使用一个类似于后向传播的算法对深度网络进行调优

    1.2 思想

          将深度网络看成一连串的自动编码器,包括两个阶段:

                  1,第一阶段是编码阶段,编码阶段对应输入层到隐藏层的映射;

                  2,第二阶段是解码阶段,对应的是隐藏层到输出层的映射

    1.3 学习过程

           1,用隐藏层进行编码,再将编码结果作为输入传递给输出层进行解码,解码后的结果应该与原始输入相似但不相同

           2,将结果与原始输入的误差最小化得到最优的编码方案

           3,把中间层参数提取出来就是一个最优编码方法

   1.4 前向训练阶段

          1,首先训练第一层自动编码器

          2,然后将第一层自动编码器的解码部分拿掉,直接将第一层的编码结果作为输入,利用这个输入训练第二层编码器

          3,最后根据需要将第二层的解码部分换成相应的分类函数即可实现一个简单的分类器

    1.5 后向调优阶段

          1,从输出层n开始,计算参数

          2,对于n-1、n-2、.....2层,计算参数

          3,计算目标的偏微分

          4,使用偏微分对各参数进行更新

          5,完成更新后,即完成一次优化迭代

   2)稀疏编码

        无监督学习方法,用来寻找一组超完备基向量以更高效地表示样本数据

    


推荐阅读
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 强人工智能时代,区块链的角色与前景
    随着强人工智能的崛起,区块链技术在新的技术生态中扮演着怎样的角色?本文探讨了区块链与强人工智能之间的互补关系及其在未来技术发展中的重要性。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 卷积神经网络(CNN)基础理论与架构解析
    本文介绍了卷积神经网络(CNN)的基本概念、常见结构及其各层的功能。重点讨论了LeNet-5、AlexNet、ZFNet、VGGNet和ResNet等经典模型,并详细解释了输入层、卷积层、激活层、池化层和全连接层的工作原理及优化方法。 ... [详细]
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 智能车间调度研究进展
    本文综述了基于强化学习的智能车间调度策略,探讨了车间调度问题在资源有限条件下的优化方法。通过数学规划、智能算法和强化学习等手段,解决了作业车间、流水车间和加工车间中的静态与动态调度挑战。重点讨论了不同场景下的求解方法及其应用前景。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 本文探讨了亚马逊Go如何通过技术创新推动零售业的发展,以及面临的市场和隐私挑战。同时,介绍了亚马逊最新的‘刷手支付’技术及其潜在影响。 ... [详细]
  • 浪潮AI服务器NF5488A5在MLPerf基准测试中刷新多项纪录
    近日,国际权威AI基准测试平台MLPerf发布了最新的推理测试结果,浪潮AI服务器NF5488A5在此次测试中创造了18项性能纪录,显著提升了数据中心AI推理性能。 ... [详细]
  • 随着5G、云计算、人工智能、大数据等新技术的广泛应用,人们的生活生产方式发生了深刻变化。从人际互联到万物互联,数据存储与处理需求激增,推动了数据与算力设施的发展。 ... [详细]
  • 回顾与学习是进步的阶梯。再次审视卷积神经网络(CNNs),我对之前不甚明了的概念有了更深的理解。本文旨在分享这些新的见解,并探讨CNNs在图像识别和自然语言处理等领域中的实际应用。 ... [详细]
author-avatar
-林之涵_396
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有