import java.util.Arrays; import java.util.Scanner; public class 大数乘法 { public static void main(String[] args) { Scanner in = new Scanner(System.in); System.out.println("输入数据:"); String a = in.nextLine(); String b = in.nextLine(); long num1 = temp(a); long num2 = temp(b); String result1 = bigNumberMulti(a, b); long result2 = karatsubaMulti(num1, num2); System.out.println("普通大数乘法的结果:\n"+a+" * "+b+"\n= "+result1); System.out.println("Karatsuba大数乘法结果:\n"+a+" * "+b+"\n= "+result2); } public static String bigNumberMulti(String a, String b){ //字符串转换成数组 char[] charArr1 = a.trim().toCharArray(); char[] charArr2 = b.trim().toCharArray(); int[] arr1 = new int[charArr1.length]; int[] arr2 = new int[charArr2.length]; for (int i = 0; i ) { arr1[i] = charArr1[i] - ‘0‘; } for (int i = 0; i ) { arr2[i] = charArr2[i] - ‘0‘; } //大数乘法(不进位) int[] result = new int[arr1.length + arr2.length]; for (int i = 0; i ) { for (int j = 0; j ) { result[i+j+1] += arr1[i] * arr2[j]; } } //处理进位,result是逆序储存的 for (int k = result.length - 1; k > 0; k--) { if(result[k] >= 10 && k != 1){ result[k-1] += result[k]/10; result[k] %= 10; } } String resultStr = ""; for (int i = 1; i ) { resultStr += ""+result[i]; } return resultStr; } public static long karatsubaMulti(long num1, long num2 ){ if(num1 <10 || num2 <10) return num1*num2; int size1 = String.valueOf(num1).length(); int size2 = String.valueOf(num2).length(); int halfSize = Math.max(size1, size2) / 2; long a = Long.valueOf(String.valueOf(num1).substring(0, size1 - halfSize)); long b = Long.valueOf(String.valueOf(num1).substring(size1 - halfSize)); long c = Long.valueOf(String.valueOf(num2).substring(0, size2 - halfSize)); long d = Long.valueOf(String.valueOf(num2).substring(size2 - halfSize)); long x0 = karatsubaMulti(b, d); long x2 = karatsubaMulti(a, c); long x1 = karatsubaMulti((a+b), (c+d)) - x0 - x2; return (long)(x2*Math.pow(10, (2*halfSize)) + x1*Math.pow(10, halfSize) + x0); } public static long temp(String a){ long result = 0; for (int i = 0; i ) { result *= 10; result += a.charAt(i) - ‘0‘; } return result; } }
大数乘法(分治)