热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

大盘点:近期最值得阅读的五本深度学习书籍

全文共3046字,预计学习时长6分钟

有很长一段时间,没有人想阅读和AI有关的书,整个领域的研究如同一潭死水。但之后,AI领域涌现一批重大突破成果:图像识别、自动驾驶汽车、阿尔法围棋(Alpha Go)。似乎在一夜之间,AI不一样了。

那些早在八九十年代就诞生的算法,在超级计算机和大数据的助力下,终于散发出了它们该有的光辉。

如今,研究者争分夺秒地出版成果,来填满大家的书架。在过去的一年里,他们以手指能承受的最大速度拼命敲击键盘,以期用一本绝妙的书在亟需投喂的深度学习市场中打败同行。

现在,让我们一览这些书籍,比较优劣,看看哪些对于学习AI,或者说进一步理解这门艺术有最大的帮助。

“合适的才是最好的”。对AI学习也是如此——需要合理的、适量的理论学习和实际操作。

写这些是想强调,你需要遵循自己的学习风格,知道什么是最适合的学习方法。如果你喜欢书中出现一页又一页的详细理论,那么请直接把这篇文章当作反面教材。

但如果你是喜欢理论联系实践,那这就是你想要的书单。

1. 《深度学习》(Deep Learning)

推荐的第一本书是Ian Goodfellow所著的《深度学习》(Deep Learning)。没有哪个盘点深度学习的书单能够绕开这本书,毕竟它是Google Brain和OpenAI上的杰出研究成果。已经有一部分人将其视为指导深度学习的圣经,因为它是现存唯一囊括几十年研究成果的巨著。

尽管如此,除非你有坚实的数学基础,我并不建议你从这本书开始学习,因为它只会打击到你。

里面不仅有连篇累牍的方程式,它的编排方式和教材也相差无几,相当枯燥。即使你不得不佩服Goodfellow的智商,以及他能在一本书里塞进这么多知识的能力,但并不意味着这是一本多么吸引人的书。

道理很简单:懂得一门知识并不意味着能教会别人。我推测很多想选深度学习课程的学生手里一开始都会有这本书。

然后他们的理想抱负就被这本书劝退了。

如果你想掌握深度学习,那么在多年的学习之后这本书才可能适合你,世界上不会有比它更全面的书了,里面涵盖了相当丰富的领域知识。但如果你刚开始,或者只是AI领域里的菜鸟程序员,这本内容翔实的书只能让你望尘莫及而已。

2. 《动手学习Scikit-Learn和Tensorflow 软件》(Hands-On Machine Learning with Scikit-Learn and Tensorflow)

 

大盘点:近期最值得阅读的五本深度学习书籍

下面介绍新鲜出炉的《动手学习Scikit-Learn和Tensorflow 软件》(Hands-On Learning with Scikit-Learn and Tensorflow)。虽然这本书的方程式也不少,但可读性还是很高。事实上,这本书怎么看都很棒,怎么推荐它都不为过。其中的数学不好怎么学AI系列文章是重头戏,尤其是第五章“用卷积神经网络(CNNs)进行图像识别”,和第七章“处理自然语言”。作者Aurélien Géron能通俗易懂地解释很多复杂的问题,这也是我一直在追求的风格。

在我看来,这本书完美结合了详尽的实例和日常可用的代码。我在Safari浏览器上阅读过早期的网页版底稿,即使有很多部分还未完成,并且网页会把一部分方程式变成乱码,这些都并不能影响我愉快的阅读体验,同时我的认知水平也得到了提升。

而最终发表的版本也对原稿加以润色。像所有优秀的改写一样,成书在整体性方面做出了极大的提升。书中的想法和实例都有了更简洁和更贴切的表达,作者也以更清晰的思路串联起了不同的主题,而行文风格既做到了易于理解以便实验,也兼顾了深度,会让读者每次的阅读都有不同的收获。或许在首次阅读的时候,读者会跳过大多数方程式,然后在之后的阅读学习中会更好地理解它们。

3. 《使用Python进行深度学习》(Deep Learning with Python)

 

大盘点:近期最值得阅读的五本深度学习书籍

三号选手是由Keras创始人Francois Chollet所著的《使用Python进行深度学习》(Deep Learning with Python)这本书距离上市还得有一段时间,所以务必马上预订一本。我在曼宁出版社(Manning Press)的预览计划(MEAP,亦称为曼宁早期访问)中阅读了本书的前三章。只读了这些就向你们强推这本书可能为时过早,但是我并没有把它放进候补名单里,这本书就有这么好。

正如Chollet能巧妙地在Keras里简化复杂概念一样,本书的内容同样易读且引人入胜。它甚至使AI和深度学习中最具挑战性的部分变得易于理解。在看这本书之前,张量(tensors)到底是个什么东西我一点概念都没有。但Chollet能够指点迷津,帮我看清了张量的本质:承载数字的容器(buckets)。如你所料,本书也收录了很多相当棒的例证,考虑到Chollet的GitHub充满了GitHub上种类最全的AI代码。

可以预见,这本书在出版前会越写越好。你可以订购这本书来支持作者,或者尽你所能在MEAP里得到它。你甚至可以向他本人反馈想法,以真正的开源风格改进这本书!

4. 《深度学习实践》(Deep Learning: A Practitioner’s Approach)

 

大盘点:近期最值得阅读的五本深度学习书籍

《深度学习实践》(Deep Learning: A Practitioner’s Approach)是名单上的第四位选手。这本书重点关注DL4J java框架。虽然很多AI研究都是在Python中完成的,但随着越来越多的企业接受机器学习,未来的很多工作可能会转向通过java完成。Java仍然是大公司的首选,它的优点明显,可移植、可反复使用,并且还有一大批接受过传统训练的程序员,他们比任何人都了解java。

我有幸在此书即将出版前阅读过终稿,内容精妙绝伦。很明显,这是第一本写给学生的关于深度学习的书。如果你已经有了一些背景知识,并且只想探索java上的DL,最好直接跳到示例部分。但如果你对DL的了解几乎为零,却在java语言上有坚实的基础,这就是一本你可以从头读到尾的书。书中第四章“深度学习的主要架构”非常精彩。它为学习的关键架构做了一个详尽的汇总,这对解决当前的实际问题有极大帮助。

尽管我不是一个程序员,但我已经和一些朋友分享了这本书,因为他们和这个语言息息相关并且十分热爱java。我发现作为介绍DL的书籍,本书的示例和整体结构都非常完美,预计它将在夏末出版。

5. 《Tensorflow机器学习指南》(TensorFlow Machine Learning Cookbook)

 

大盘点:近期最值得阅读的五本深度学习书籍

最后介绍的是《Tensorflow机器学习指南》(TensorFlow Machine Learning Cookbook)。本书在排版和代码上有一点小问题,但总的来说,它在自然语言处理等各个不同主题上提供了许多不错的范例。

换句话说,我不会考虑单独购买这本书。

像其他学习指南一样,它把许多更深层次的解释工作留给了别的书,本书几乎只关注代码。如果你还不了解卷积神经网络的来龙去脉,那么理解书中一笔带过的概念将会很困难。如果你在阅读过同类型书籍,并且亲身试验过里面的范例之后想要购买这本书,它对做额外的实践和练习是很有帮助的,就是别用它来铺路。

大盘点:近期最值得阅读的五本深度学习书籍

留言 点赞 关注

我们一起分享AI学习与发展的干货
欢迎关注全平台AI垂类自媒体 “读芯术”

大盘点:近期最值得阅读的五本深度学习书籍

(添加小编微信:dxsxbb,加入读者圈,一起讨论最新鲜的人工智能科技哦~)


推荐阅读
  • 京东AI创新之路:周伯文解析京东AI战略的独特之处
    2018年4月15日,京东在北京举办了人工智能创新峰会,会上首次公开了京东AI的整体布局和发展方向。此次峰会不仅展示了京东在AI领域的最新成果,还标志着京东AI团队的首次集体亮相。本文将深入探讨京东AI的发展策略及其与BAT等公司的不同之处。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 《计算机视觉:算法与应用》第二版初稿上线,全面更新迎接未来
    经典计算机视觉教材《计算机视觉:算法与应用》迎来了其第二版,现已开放初稿下载。本书由Facebook研究科学家Richard Szeliski撰写,自2010年首版以来,一直是该领域的标准参考书。 ... [详细]
  • 探索CNN的可视化技术
    神经网络的可视化在理论学习与实践应用中扮演着至关重要的角色。本文深入探讨了三种有效的CNN(卷积神经网络)可视化方法,旨在帮助读者更好地理解和优化模型。 ... [详细]
  • Python 异步编程:深入理解 asyncio 库(上)
    本文介绍了 Python 3.4 版本引入的标准库 asyncio,该库为异步 IO 提供了强大的支持。我们将探讨为什么需要 asyncio,以及它如何简化并发编程的复杂性,并详细介绍其核心概念和使用方法。 ... [详细]
  • CentOS7源码编译安装MySQL5.6
    2019独角兽企业重金招聘Python工程师标准一、先在cmake官网下个最新的cmake源码包cmake官网:https:www.cmake.org如此时最新 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 本文档旨在帮助开发者回顾游戏开发中的人工智能技术,涵盖移动算法、群聚行为、路径规划、脚本AI、有限状态机、模糊逻辑、规则式AI、概率论与贝叶斯技术、神经网络及遗传算法等内容。 ... [详细]
  • 多智能体深度强化学习中的分布式奖励估计
    本文探讨了在多智能体系统中应用分布式奖励估计技术,以解决由于环境和代理互动引起的奖励不确定性问题。通过设计多动作分支奖励估计和策略加权奖励聚合方法,本研究旨在提高多智能体强化学习(MARL)的有效性和稳定性。 ... [详细]
  • 本文探讨了亚马逊Go如何通过技术创新推动零售业的发展,以及面临的市场和隐私挑战。同时,介绍了亚马逊最新的‘刷手支付’技术及其潜在影响。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 强人工智能时代,区块链的角色与前景
    随着强人工智能的崛起,区块链技术在新的技术生态中扮演着怎样的角色?本文探讨了区块链与强人工智能之间的互补关系及其在未来技术发展中的重要性。 ... [详细]
author-avatar
宇宇宇你同行
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有