热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

从1到N这N个数中1的出现了多少次?

给定一个十进制整数N,求出从1到N的所有整数中出现1的个数。例如:N2,1,2出现了1个1。N12,1,2,3,4,5,6,7,8,9,10,11,12。出现了5个1。最直接的方法就是从1开始遍历到N,将其中每一个数中含有1的个数加起来,就得到了问题的解。

给定一个十进制整数N,求出从1到N的所有整数中出现"1"的个数。

例如:N=2,1,2出现了1个"1"。

N=12,1,2,3,4,5,6,7,8,9,10,11,12。出现了5个"1"。

最直接的方法就是从1开始遍历到N,将其中每一个数中含有"1"的个数加起来,就得到了问题的解。

public long CountOne3(long n)
{
	long i = 0,j = 1;
	long count = 0;
	for (i = 0; i <= n; i++)
	{
		j = i;
		while (j != 0)
		{
			if (j % 10 == 1)
				count++;
			j = j / 10;
		}
	}
	return count;
}

此方法简单,容易理解,但它的问题是效率,时间复杂度为O(N * lgN),N比较大的时候,需要耗费很长的时间。

我们重新分析下这个问题,对于任意一个个位数n,只要n>=1,它就包含一个"1";n<1,即n=0时,则包含的"1"的个数为0。于是我们考虑用分治的思想将任意一个n位数不断缩小规模分解成许多个个位数,这样求解就很方便。

但是,我们该如何降低规模?仔细分析,我们会发现,任意一个n位数中"1"的个位可以分解为两个n-1位数中"1"的个数的和加上一个与最高位数相关的常数C。例如,f(12) = f(10 - 1) + f(12 - 10) + 3,其中3是表示最高位为1的数字个数,这里就是10,11,12;f(132)=f(100 -1) + f(132 - 100) + 33,33代表最高位为1的数字的个数,这里就是100~132;f(232) = 2*f(100 - 1) + f(32) + 100,因为232大于199,所以它包括了所有最高位为1的数字即100~199,共100个。

综上,我们分析得出,最后加的常数C只跟最高位n1是否为1有关,当最高位为1时,常数C为原数字N去掉最高位后剩下的数字+1,当最高位为1时,常数C为10bit,其中bit为N的位数-1,如N=12时,bit=1,N=232时,bit=2。

于是,我们可以列出递归方程如下:

if(n1 == 1)
f(n) = f(10bit-1) + f(n - 10bit) + n - 10bit+ 1;
else
f(n) = n1*f(10bit-1) + f(n – n1*10bit) + 10bit;

递归的出口条件为:

if(1
	
	

基于此,编写如下代码:

public long CountOne(long n)
{ 
	long count = 0;
	if (n == 0)
		count = 0;
	else if (n > 1 && n <10)
		count =  1;
	else
	{
		long highest = n;//表示最高位的数字
		int bit = 0;
		while (highest >= 10)
		{
			highest = highest / 10;
			bit++;
		}
		int weight = (int)Math.Pow(10, bit);//代表最高位的权重,即最高位一个1代表的大小
		if (highest == 1)
		{
			count = CountOne(weight - 1)
			+ CountOne(n - weight)
			+ n - weight + 1;
		}
		else
		{
      		count = highest * CountOne(weight - 1)
    		+ CountOne(n - highest * weight)
        	+ weight;
		}
	}
	return count;
}

此算法的优点是不用遍历1~N就可以得到f(N)。经过我测试,此算法的运算速度比解法一快了许多许多,数字在1010内时,算法都可以在毫秒级内结束,而解法一在计算109时,时间超过了5分钟。但此算法有一个显著的缺点就是当数字超过1010时会导致堆栈溢出,无法计算。

还有就是,我尝试了许久也没有计算出此算法的时间复杂度到底是多少,似乎是O(lg2N),我并不确定,希望知道的高手能给予解答。

解法二告诉我们1~ N中"1"的个数跟最高位有关,那我们换个角度思考,给定一个N,我们分析1~N中的数在每一位上出现1的次数的和,看看每一位上"1"出现的个数的和由什么决定。

1位数的情况:在解法二中已经分析过,大于等于1的时候,有1个,小于1就没有。

2位数的情况:N=13,个位数出现的1的次数为2,分别为1和11,十位数出现1的次数为4,分别为10,11,12,13,所以f(N) = 2+4。N=23,个位数出现的1的次数为3,分别为1,11,21,十位数出现1的次数为10,分别为10~19,f(N)=3+10。

由此我们发现,个位数出现1的次数不仅和个位数有关,和十位数也有关,如果个位数大于等于1,则个位数出现1的次数为十位数的数字加1;如果个位数为0,个位数出现1的次数等于十位数数字。而十位数上出现1的次数也不仅和十位数相关,也和个位数相关:如果十位数字等于1,则十位数上出现1的次数为个位数的数字加1,假如十位数大于1,则十位数上出现1的次数为10。

3位数的情况:

N=123,个位出现1的个数为13:1,11,21,…,91,101,111,121。十位出现1的个数为20:10~19,110~119。百位出现1的个数为24:100~123。

我们可以继续分析4位数,5位数,推导出下面一般情况: 假设N,我们要计算百位上出现1的次数,将由三部分决定:百位上的数字,百位以上的数字,百位一下的数字。

如果百位上的数字为0,则百位上出现1的次数仅由更高位决定,比如12013,百位出现1的情况为100~199,1100~1199,2100~2199,…,11100~11199,共1200个。等于更高位数字乘以当前位数,即12 * 100。

如果百位上的数字大于1,则百位上出现1的次数仅由更高位决定,比如12213,百位出现1的情况为100~199,1100~1199,2100~2199,…,11100~11199,12100~12199共1300个。等于更高位数字加1乘以当前位数,即(12 + 1)*100。

如果百位上的数字为1,则百位上出现1的次数不仅受更高位影响,还受低位影响。例如12113,受高位影响出现1的情况:100~199,1100~1199,2100~2199,…,11100~11199,共1200个,但它还受低位影响,出现1的情况是12100~12113,共114个,等于低位数字113+1。

综合以上分析,写出如下代码:

public long CountOne2(long n)
{
	long count = 0;
	long i = 1;
	long current = 0,after = 0,before = 0;
	while((n / i) != 0)
	{           
		current = (n / i) % 10;
		before = n / (i * 10);
		after = n - (n / i) * i;
		if (current > 1)
			count = count + (before + 1) * i;
		else if (current == 0)
			count = count + before * i;
		else if(current == 1)
			count = count + before * i + after + 1;
		i = i * 10;
	}
	return count;
}

此算法的时间复杂度仅为O(lgN),且没有递归保存现场的消耗和堆栈溢出的问题。

本文地址:http://www.nowamagic.net/librarys/veda/detail/1064,欢迎访问原出处。


推荐阅读
  • 本题要求实现一个名为fun的函数,该函数的功能是从给定的字符串s中移除所有ASCII码为偶数值的字符,并将剩下的字符组成的新字符串存储在由t指向的数组中。 ... [详细]
  • 知识图谱与图神经网络在金融科技中的应用探讨
    本文详细介绍了融慧金科AI Lab负责人张凯博士在2020爱分析·中国人工智能高峰论坛上的演讲,探讨了知识图谱与图神经网络模型如何在金融科技领域发挥重要作用。 ... [详细]
  • 在OpenCV 3.1.0中实现SIFT与SURF特征检测
    本文介绍如何在OpenCV 3.1.0版本中通过Python 2.7环境使用SIFT和SURF算法进行图像特征点检测。由于这些高级功能在OpenCV 3.0.0及更高版本中被移至额外的contrib模块,因此需要特别处理才能正常使用。 ... [详细]
  • 张正友相机标定算法解析:无需棋盘格
    本文深入探讨了张正友教授于1998年提出的单平面标定技术,该方法结合了传统标定与自标定的优势,通过简易的棋盘格实现了高效准确的相机标定。 ... [详细]
  • 使用 MATLAB 将高光谱数据集转换为伪彩色 CIE 图像
    本文介绍了一种方法,通过 MATLAB 将高光谱数据集的每个维度的图像转换为伪彩色 CIE 图像。用户只需指定波段即可完成转换。 ... [详细]
  • 本文总结了一次针对大厂Java研发岗位的面试经历,探讨了面试中常见的问题及其背后的原因,并分享了一些实用的面试准备资料。 ... [详细]
  • Windows操作系统提供了Encrypting File System (EFS)作为内置的数据加密工具,特别适用于对NTFS分区上的文件和文件夹进行加密处理。本文将详细介绍如何使用EFS加密文件夹,以及加密过程中的注意事项。 ... [详细]
  • 深入解析WebP图片格式及其应用
    随着互联网技术的发展,无论是PC端还是移动端,图片数据流量占据了很大比重。尤其在高分辨率屏幕普及的背景下,如何在保证图片质量的同时减少文件大小,成为了亟待解决的问题。本文将详细介绍Google推出的WebP图片格式,探讨其在实际项目中的应用及优化策略。 ... [详细]
  • 菜鸟物流用户增长部现正大规模招聘P6及以上级别的JAVA工程师,提供年后入职选项。 ... [详细]
  • 深入解析层次聚类算法
    本文详细介绍了层次聚类算法的基本原理,包括其通过构建层次结构来分类样本的特点,以及自底向上(凝聚)和自顶向下(分裂)两种主要的聚类策略。文章还探讨了不同距离度量方法对聚类效果的影响,并提供了具体的参数设置指导。 ... [详细]
  • QQ推出新功能:个性化QID身份卡
    您是否还记得曾经风靡一时的即时通讯工具QQ?近日,QQ悄然上线了一项新功能——QID身份卡。这项功能将如何改变用户的社交体验?本文为您详细解读。 ... [详细]
  • 本文详细介绍了如何在ARM架构的目标设备上部署SSH服务端,包括必要的软件包下载、交叉编译过程以及最终的服务配置与测试。适合嵌入式开发人员和系统集成工程师参考。 ... [详细]
  • Bootstrap Paginator 分页插件详解与应用
    本文深入探讨了Bootstrap Paginator这款流行的JavaScript分页插件,提供了详细的使用指南和示例代码,旨在帮助开发者更好地理解和利用该工具进行高效的数据展示。 ... [详细]
  • 深入理解云计算与大数据技术
    本文详细探讨了云计算与大数据技术的关键知识点,包括大数据处理平台、社会网络大数据、城市大数据、工业大数据、教育大数据、数据开放与共享的应用,以及搜索引擎与Web挖掘、推荐技术的研究及应用。文章还涵盖了云计算的基础概念、特点和服务类型分类。 ... [详细]
  • 八段代码完全控制Promise
    1.Promise的马上实行性varpnewPromise(function(resolve,reject){console.log(createapromise);resolve ... [详细]
author-avatar
mobiledu2502912677
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有