热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

CodeForces315B:线段树与区间更新

题目概述:Sereja拥有一个由n个整数组成的数组a1,a2,...,an。他计划执行m项操作,这些操作包括更新数组中的特定元素、增加数组中所有元素的值,以及查询数组中的特定元素。

题目描述:

Sereja 拥有一个包含 n 个整数的数组 a1, a2, ..., an。他非常活跃,计划执行 m 次操作。这 m 次操作分为三种类型:

  1. 将第 vi 个数组元素设置为 xi。即执行 avi = xi。
  2. 将每个数组元素增加 yi。即对所有的 ai 执行 ai = ai + yi (1 ≤ i ≤ n)。
  3. 在纸上写下第 qi 个数组元素的值。即查询 aqi 的值。

请帮助 Sereja 完成所有这些操作。

输入

第一行包含两个整数 n 和 m (1 ≤ n, m ≤ 10^5),表示数组的长度和操作的数量。第二行包含 n 个用空格分隔的整数 a1, a2, ..., an (1 ≤ ai ≤ 10^9),表示原始数组的内容。

接下来的 m 行描述了 m 次操作,第 i 行描述了第 i 次操作。每行的第一个整数 ti (1 ≤ ti ≤ 3) 表示操作类型。如果 ti = 1,则后跟两个整数 vi 和 xi (1 ≤ vi ≤ n, 1 ≤ xi ≤ 10^9);如果 ti = 2,则后跟一个整数 yi (1 ≤ yi ≤ 10^4);如果 ti = 3,则后跟一个整数 qi (1 ≤ qi ≤ n)。

输出

对于每次第三类操作,输出对应的 aqi 值。按照输入中查询出现的顺序输出结果。

样例

输入

10 11
1 2 3 4 5 6 7 8 9 10
3 2
3 9
2 10
3 1
3 10
1 1 10
2 10
2 10
3 1
3 10
3 9

输出

2
9
11
20
30
40
39

问题分析:此问题可以通过使用线段树来高效地处理区间更新和单点查询。

解决方案代码

#include 
#include
#include
#include
using namespace std;
const int maxn = 1e5 + 100;
struct Node {
int l, r, val;
} tree[maxn * 4];
int a[maxn];

void build(int root, int l, int r) {
tree[root].l = l;
tree[root].r = r;
tree[root].val = 0;
if (l == r) {
tree[root].val = a[l];
return;
}
int mid = (l + r) >> 1;
build(root <<1, l, mid);
build(root <<1 | 1, mid + 1, r);
}

void pushdown(int root) {
if (tree[root].val != 0) {
tree[root <<1].val += tree[root].val;
tree[root <<1 | 1].val += tree[root].val;
tree[root].val = 0;
}
}

void update(int root, int l, int r, int cur, int op) {
if (l <= tree[root].l && r >= tree[root].r) {
if (op == 2) tree[root].val += cur;
else tree[root].val = cur;
return;
}
pushdown(root);
int mid = (tree[root].l + tree[root].r) >> 1;
if (l <= mid) update(root <<1, l, r, cur, op);
if (r > mid) update(root <<1 | 1, l, r, cur, op);
}

int query(int root, int pos) {
if (tree[root].l == tree[root].r) {
return tree[root].val;
}
pushdown(root);
int mid = (tree[root].l + tree[root].r) >> 1;
if (pos <= mid) return query(root <<1, pos);
else return query(root <<1 | 1, pos);
}

int main() {
int n, m;
while (scanf("%d%d", &n, &m) != EOF) {
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
build(1, 1, n);
for (int i = 1; i <= m; i++) {
int t;
scanf("%d", &t);
if (t == 1) {
int pos, x;
scanf("%d%d", &pos, &x);
update(1, pos, pos, x, 1);
} else if (t == 2) {
int v;
scanf("%d", &v);
update(1, 1, n, v, 2);
} else if (t == 3) {
int pos;
scanf("%d", &pos);
printf("%d\n", query(1, pos));
}
}
}
return 0;
}

推荐阅读
  • 扫描线三巨头 hdu1928hdu 1255  hdu 1542 [POJ 1151]
    学习链接:http:blog.csdn.netlwt36articledetails48908031学习扫描线主要学习的是一种扫描的思想,后期可以求解很 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 本文详细探讨了KMP算法中next数组的构建及其应用,重点分析了未改良和改良后的next数组在字符串匹配中的作用。通过具体实例和代码实现,帮助读者更好地理解KMP算法的核心原理。 ... [详细]
  • 本题探讨了一种字符串变换方法,旨在判断两个给定的字符串是否可以通过特定的字母替换和位置交换操作相互转换。核心在于找到这些变换中的不变量,从而确定转换的可能性。 ... [详细]
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • golang常用库:配置文件解析库/管理工具viper使用
    golang常用库:配置文件解析库管理工具-viper使用-一、viper简介viper配置管理解析库,是由大神SteveFrancia开发,他在google领导着golang的 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • Explore how Matterverse is redefining the metaverse experience, creating immersive and meaningful virtual environments that foster genuine connections and economic opportunities. ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 本文基于刘洪波老师的《英文词根词缀精讲》,深入探讨了多个重要词根词缀的起源及其相关词汇,帮助读者更好地理解和记忆英语单词。 ... [详细]
  • 在前两篇文章中,我们探讨了 ControllerDescriptor 和 ActionDescriptor 这两个描述对象,分别对应控制器和操作方法。本文将基于 MVC3 源码进一步分析 ParameterDescriptor,即用于描述 Action 方法参数的对象,并详细介绍其工作原理。 ... [详细]
  • C++: 实现基于类的四面体体积计算
    本文介绍如何使用C++编程语言,通过定义类和方法来计算由四个三维坐标点构成的四面体体积。文中详细解释了四面体体积的数学公式,并提供了两种不同的实现方式。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • Splay Tree 区间操作优化
    本文详细介绍了使用Splay Tree进行区间操作的实现方法,包括插入、删除、修改、翻转和求和等操作。通过这些操作,可以高效地处理动态序列问题,并且代码实现具有一定的挑战性,有助于编程能力的提升。 ... [详细]
author-avatar
我只当你的千纸鹤
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有