热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

判断三维空间中的一个点是否在三角形内,边上的一种算法

假设三角形的三点用A(Xa,Ya,Za),B(Xb,Yb,Zb),C(Xc,Yc,Zc)表示,判断P(X
   

   假设三角形的三点用A(Xa,Ya,Za),B(Xb,Yb,Zb),C(Xc,Yc,Zc)表示,判断P(Xp,Yp,Zp)与三角形ABC的关系

网上判断点是否处于三角内内部,边上的方法有很多,但是比较简洁的方法,比如面积法,即判断三角形PAB,PAC,PBC之和与三角形ABC的面积。如果S(PAB+PAC+PBC)=S(ABC),则点位于三角形内部,或边上。但是上述方法由于涉及到平方和开根号,计算量比较大。

   最近自己整理了一个计算量稍小的算法。具体如下:

判断三维空间中的一个点是否在三角形内,边上的一种算法

令向量(B-A)=(X1,Y1,Z1);向量(C-A)=(X2,Y2,Z2);向量(P-A)=(X3,Y3,Z3);

假设点P位于三角形ABC所在的平面,则向量(P-A)可以用向量(B-A)和(C-A)表示,即(P-A)=m*(B-A)+n(C-A);只要求出m,n的值即可判断点与三角形的关系。如果没有解,那么p不在三角形所在平面,如果有解,那么:                            若:          若:         若:

   m>0                         m=0;          n=0;         m>0;

   n>0;                        n>0;          m>0;         n>0;

   m+n<1                       m+n<1;         m+n<1;       m+n=1;

则P在三角形内部。               P在AC边上   P在AB边上      P在BC边上

 

所以,问题的关键是要计算m,n的值,从而可以得到点和三角形的空间关系。

具体步骤如下:

由(P-A)=m*(B-A)+n(C-A)得到(X3,Y3,Z3)=m*(X1,Y1,Z1)+n*(X2,Y2,Z2),写成矩阵形式,得到:

X1 X2      X3

Y1 Y2*     Y3

Z1 Z2      Z3

          X1X2                   X3

令矩阵K为  Y1Y2               b为 Y3

          Z1Z2                   Z3

      因为ABC为三角形,所以向量(B-A)=(X1,Y1,Z1);向量(C-A)=(X2,Y2,Z2)线性不相关,即矩阵K为列满秩矩阵,所以

    m

        =K的加号逆*b;

    n

其中K的加号逆为


推荐阅读
  • 非公版RTX 3080显卡的革新与亮点
    本文深入探讨了图形显卡的进化历程,重点介绍了非公版RTX 3080显卡的技术特点和创新设计。 ... [详细]
  • 深入理解OAuth认证机制
    本文介绍了OAuth认证协议的核心概念及其工作原理。OAuth是一种开放标准,旨在为第三方应用提供安全的用户资源访问授权,同时确保用户的账户信息(如用户名和密码)不会暴露给第三方。 ... [详细]
  • 本文探讨了Hive中内部表和外部表的区别及其在HDFS上的路径映射,详细解释了两者的创建、加载及删除操作,并提供了查看表详细信息的方法。通过对比这两种表类型,帮助读者理解如何更好地管理和保护数据。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 本文介绍如何利用动态规划算法解决经典的0-1背包问题。通过具体实例和代码实现,详细解释了在给定容量的背包中选择若干物品以最大化总价值的过程。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文探讨如何设计一个安全的加密和验证算法,确保生成的密码具有高随机性和低重复率,并提供相应的验证机制。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 在金融和会计领域,准确无误地填写票据和结算凭证至关重要。这些文件不仅是支付结算和现金收付的重要依据,还直接关系到交易的安全性和准确性。本文介绍了一种使用C语言实现小写金额转换为大写金额的方法,确保数据的标准化和规范化。 ... [详细]
author-avatar
年轻人创事业的美丽家园
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有