热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

彻底理解GolangSlice

彻底理解GolangSlice-看完这篇文章,下面这些高频面试题你都会答了吧Goslice的底层实现原理Goarray和slice的区别Goslice深拷贝和浅拷贝Goslice扩

看完这篇文章,下面这些高频面试题你都会答了吧
  1. Go slice的底层实现原理
  2. Go array和slice的区别
  3. Go slice深拷贝和浅拷贝
  4. Go slice扩容机制是怎样的?
  5. 为什么Go slice是非线程安全的?

实现原理

slice是无固定长度的数组,底层结构是一个结构体,包含如下3个属性

一个 slice 在 golang 中占用 24 个 bytes

type slice struct {
    array unsafe.Pointer 
    len   int 
    cap   int 
}

array : 包含了一个指向一个数组的指针,数据实际上存储在这个指针指向的数组上,占用 8 bytes

len: 当前 slice 使用到的长度,占用8 bytes

cap : 当前 slice 的容量,同时也是底层数组 array 的长度, 8 bytes

slice并不是真正意义上的动态数组,而是一个引用类型。slice总是指向一个底层array,slice的声明也可以像 array一样,只是长度可变。golang中通过语法糖,使得我们可以像声明array一样,自动创建slice结构体

根据索引位置取切片slice 元素值时,默认取值范围是(0~len(slice)-1),一般输出slice时,通常是指 slice[0:len(slice)-1],根据下标就可以输出所指向底层数组中的值

主要特性

引用类型

golang 有三个常用的高级类型slice、map、channel, 它们都是引用类型,当引用类型作为函数参数时,可能会修改原内容数据。

func sliceModify(s []int) {
    s[0] = 100
}

func sliceAppend(s []int) []int {
    s = append(s, 100)
    return s
}

func sliceAppendPtr(s *[]int) {
    *s = append(*s, 100)
    return
}

// 注意:Go语言中所有的传参都是值传递(传值),都是一个副本,一个拷贝。
// 拷贝的内容是非引用类型(int、string、struct等这些),在函数中就无法修改原内容数据;
// 拷贝的内容是引用类型(interface、指针、map、slice、chan等这些),这样就可以修改原内容数据。
func TestSliceFn(t *testing.T) {
    // 参数为引用类型slice:外层slice的len/cap不会改变,指向的底层数组会改变
    s := []int{1, 1, 1}
    newS := sliceAppend(s)
    // 函数内发生了扩容
    t.Log(s, len(s), cap(s))
    // [1 1 1] 3 3
    t.Log(newS, len(newS), cap(newS)) 
    // [1 1 1 100] 4 6

    s2 := make([]int, 0, 5)
    newS = sliceAppend(s2)
    // 函数内未发生扩容
    t.Log(s2, s2[0:5], len(s2), cap(s2)) 
    // [] [100 0 0 0 0] 0 5
    t.Log(newS, newS[0:5], len(newS), cap(newS))
    // [100] [100 0 0 0 0] 1 5

    // 参数为引用类型slice的指针:外层slice的len/cap会改变,指向的底层数组会改变
    sliceAppendPtr(&s)
    t.Log(s, len(s), cap(s)) 
  // [1 1 1 100] 4 6
    sliceModify(s)
    t.Log(s, len(s), cap(s)) 
  // [100 1 1 100] 4 6
}

公众号后台caspar回复【代码】获取本文所有示例代码

切片状态

切片有3种特殊的状态,分为「零切片」、「空切片」和「nil 切片」

func TestSliceEmptyOrNil(t *testing.T) {
    var slice1 []int           
  // slice1 is nil slice
    slice2 := make([]int, 0)    
    // slcie2 is empty slice
    var slice3 = make([]int, 2) 
    // slice3 is zero slice
    if slice1 == nil {
        t.Log("slice1 is nil.") 
        // 会输出这行
    }
    if slice2 == nil {
        t.Log("slice2 is nil.") 
        // 不会输出这行
    }
    t.Log(slice3) // [0 0]
}

非线程安全

slice不支持并发读写,所以并不是线程安全的,使用多个 goroutine 对类型为 slice 的变量进行操作,每次输出的值大概率都不会一样,与预期值不一致; slice在并发执行中不会报错,但是数据会丢失

/**
* 切片非并发安全
* 多次执行,每次得到的结果都不一样
* 可以考虑使用 channel 本身的特性 (阻塞) 来实现安全的并发读写
 */
func TestSliceConcurrencySafe(t *testing.T) {
    a := make([]int, 0)
    var wg sync.WaitGroup
    for i := 0; i <10000; i++ {
        wg.Add(1)
        go func(i int) {
            a = append(a, i)
            wg.Done()
        }(i)
    }
    wg.Wait()
    t.Log(len(a)) 
    // not equal 10000
}

如果想实现slice线程安全,有两种方式:

方式一:通过加锁实现slice线程安全,适合对性能要求不高的场景。

func TestSliceConcurrencySafeByMutex(t *testing.T) {
    var lock sync.Mutex //互斥锁
    a := make([]int, 0)
    var wg sync.WaitGroup
    for i := 0; i <10000; i++ {
        wg.Add(1)
        go func(i int) {
            defer wg.Done()
            lock.Lock()
            defer lock.Unlock()
            a = append(a, i)
        }(i)
    }
    wg.Wait()
    t.Log(len(a)) 
    // equal 10000
}

方式二:通过channel实现slice线程安全,适合对性能要求高的场景。

func TestSliceConcurrencySafeByChanel(t *testing.T) {
    buffer := make(chan int)
    a := make([]int, 0)
    // 消费者
    go func() {
        for v := range buffer {
            a = append(a, v)
        }
    }()
    // 生产者
    var wg sync.WaitGroup
    for i := 0; i <10000; i++ {
        wg.Add(1)
        go func(i int) {
            defer wg.Done()
            buffer <- i
        }(i)
    }
    wg.Wait()
    t.Log(len(a)) 
    // equal 10000
}

共享存储空间

多个切片如果共享同一个底层数组,这种情况下,对其中一个切片或者底层数组的更改,会影响到其他切片

/**
* 切片共享存储空间
 */
func TestSliceShareMemory(t *testing.T) {
    slice1 := []string{"1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"}
    Q2 := slice1[3:6]
    t.Log(Q2, len(Q2), cap(Q2)) 
    // [4 5 6] 3 9
    Q3 := slice1[5:8]
    t.Log(Q3, len(Q3), cap(Q3)) 
    // [6 7 8] 3 7
    Q3[0] = "Unkown"
    t.Log(Q2, Q3) 
    // [4 5 Unkown] [Unkown 7 8]

    a := []int{1, 2, 3, 4, 5}
    shadow := a[1:3]
    t.Log(shadow, a)             
    // [2 3] [1 2 3 4 5]
    shadow = append(shadow, 100) 
    // 会修改指向数组的所有切片
    t.Log(shadow, a)            
  // [2 3 100] [1 2 3 100 5]
}

常用操作

创建

slice 的创建有4种方式,如下:

func TestSliceInit(t *testing.T) {
    // 初始化方式1:直接声明
    var slice1 []int
    t.Log(len(slice1), cap(slice1)) 
    // 0, 0
    slice1 = append(slice1, 1)
    t.Log(len(slice1), cap(slice1)) 
    // 1, 1, 24

    // 初始化方式2:使用字面量
    slice2 := []int{1, 2, 3, 4}
    t.Log(len(slice2), cap(slice2)) 
    // 4, 4, 24

    // 初始化方式3:使用make创建slice
    slice3 := make([]int, 3, 5)           
  // make([]T, len, cap) cap不传则和len一样
    t.Log(len(slice3), cap(slice3))       
  // 3, 5
    t.Log(slice3[0], slice3[1], slice3[2]) 
    // 0, 0, 0
    // t.Log(slice3[3], slice3[4]) 
    // panic: runtime error: index out of range [3] with length 3
    slice3 = append(slice3, 1)
    t.Log(len(slice3), cap(slice3)) 
    // 4, 5, 24

    // 初始化方式4: 从切片或数组“截取”
    arr := [100]int{}
    for i := range arr {
        arr[i] = i
    }
    slcie4 := arr[1:3]
    slice5 := make([]int, len(slcie4))
    copy(slice5, slcie4)
    t.Log(len(slcie4), cap(slcie4), unsafe.Sizeof(slcie4)) 
    // 2,99,24
    t.Log(len(slice5), cap(slice5), unsafe.Sizeof(slice5)) 
    // 2,2,24
}

增加

func TestSliceGrowing(t *testing.T) {
    slice1 := []int{}
    for i := 0; i <10; i++ {
        slice1 = append(slice1, i)
        t.Log(len(slice1), cap(slice1))
    }
    // 1 1
    // 2 2
    // 3 4
    // 4 4
    // 5 8
    // 6 8
    // 7 8
    // 8 8
    // 9 16
    // 10 16
}

删除

func TestSliceDelete(t *testing.T) {
    slice1 := []int{1, 2, 3, 4, 5}
    var x int
    // 删除最后一个元素
    x, slice1 = slice1[len(slice1)-1], slice1[:len(slice1)-1] 
    t.Log(x, slice1, len(slice1), cap(slice1)) 
    // 5 [1 2 3 4] 4 5

    // 删除第2个元素    
    slice1 = append(slice1[:2], slice1[3:]...) 
    t.Log(slice1, len(slice1), cap(slice1))    
    // [1 2 4] 3 5
}

查找

v := s[i] // 下标访问

修改

s[i] = 5 // 下标修改

截取

/**
* 切片截取
 */
func TestSliceSubstr(t *testing.T) {
    slice1 := []int{1, 2, 3, 4, 5}
    slice2 := slice1[:]
    // 截取 slice[left:right:max]
    // left:省略默认0
    // right:省略默认len(slice1)
    // max: 省略默认len(slice1)
    // len = right-left+1
    // cap = max-left
    t.Log(slice2, len(slice2), cap(slice2)) 
    // 1 2 3 4 5] 5 5
    slice3 := slice1[1:]
    t.Log(slice3, len(slice3), cap(slice3)) 
    // [2 3 4 5] 4 4
    slice4 := slice1[:2]
    t.Log(slice4, len(slice4), cap(slice4)) 
    // [1 2] 2 5
    slice5 := slice1[1:2]
    t.Log(slice5, len(slice5), cap(slice5)) 
    // [2] 1 4
    slice6 := slice1[:2:5]
    t.Log(slice6, len(slice6), cap(slice6)) 
    // [1 2] 2 5
    slice7 := slice1[1:2:2]
    t.Log(slice7, len(slice7), cap(slice7)) 
    // [2] 1 1
}

遍历

切片有3种遍历方式

/**
* 切片遍历
 */
func TestSliceTravel(t *testing.T) {
    slice1 := []int{1, 2, 3, 4}
    for i := 0; i 

反转

func TestSliceReverse(t *testing.T) {
    a := []int{1, 2, 3, 4, 5}
    for left, right := 0, len(a)-1; left 

拷贝

开发中会经常的把一个变量复制给另一个变量,那么这个过程,可能是深浅拷贝,那么今天帮大家区分一下这两个拷贝的区别和具体的区别

深拷贝

拷贝的是数据本身,创造一个样的新对象,新创建的对象与原对象不共享内存,新创建的对象在内存中开辟一个新的内存地址,新对象值修改时不会影响原对象值。既然内存地址不同,释放内存地址时,可分别释放

值类型的数据,默认赋值操作都是深拷贝,Array、Int、String、Struct、Float,Bool。引用类型的数据如果想实现深拷贝,需要通过辅助函数完成

比如golang深拷贝copy 方法会把源切片值(即 from Slice )中的元素复制到目标切片(即 to Slice )中,并返回被复制的元素个数,copy 的两个类型必须一致。copy 方法最终的复制结果取决于较短的那个切片,当较短的切片复制完成,整个复制过程就全部完成了

/**
* 深拷贝
 */
func TestSliceDeepCopy(t *testing.T) {
    slice1 := []int{1, 2, 3, 4, 5}
    slice2 := make([]int, 5, 5)
    // 深拷贝
    copy(slice2, slice1)                   
    t.Log(slice1, len(slice1), cap(slice1)) 
    // [1 2 3 4 5] 5 5
    t.Log(slice2, len(slice2), cap(slice2)) 
    // [1 2 3 4 5] 5 5
    slice1[1] = 100                        
    t.Log(slice1, len(slice1), cap(slice1)) 
    // [1 100 3 4 5] 5 5
    t.Log(slice2, len(slice2), cap(slice2)) 
    // [1 2 3 4 5] 5 5
}

浅拷贝

拷贝的是数据地址,只复制指向的对象的指针,此时新对象和老对象指向的内存地址是一样的,新对象值修改时老对象也会变化。释放内存地址时,同时释放内存地址。

引用类型的数据,默认全部都是浅拷贝,Slice、Map等

目的切片和源切片指向同一个底层数组,任何一个数组元素改变,都会同时影响两个数组。

/**
* 浅拷贝
 */
func TestSliceShadowCopy(t *testing.T) {
    slice1 := []int{1, 2, 3, 4, 5}
    // 浅拷贝(注意 := 对于引用类型是浅拷贝,对于值类型是深拷贝)
    slice2 := slice1     
    t.Logf("%p", slice1) // 0xc00001c120
    t.Logf("%p", slice2) // 0xc00001c120
    // 同时改变两个数组,这时就是浅拷贝,未扩容时,修改 slice1 的元素之后,slice2 的元素也会跟着修改
    slice1[0] = 10
    t.Log(slice1, len(slice1), cap(slice1)) 
    // [10 2 3 4 5] 5 5
    t.Log(slice2, len(slice2), cap(slice2)) 
    // [10 2 3 4 5] 5 5
    // 注意下:扩容后,slice1和slice2不再指向同一个数组,修改 slice1 的元素之后,slice2 的元素不会被修改了
    slice1 = append(slice1, 5, 6, 7, 8)
    slice1[0] = 11   
  // 这里可以发现,slice1[0] 被修改为了 11, slice1[0] 还是10
    t.Log(slice1, len(slice1), cap(slice1)) 
    // [11 2 3 4 5 5 6 7 8] 9 10
    t.Log(slice2, len(slice2), cap(slice2))
  // [10 2 3 4 5] 5 5
}

在复制 slice 的时候,slice 中数组的指针也被复制了,在触发扩容逻辑之前,两个 slice 指向的是相同的数组,触发扩容逻辑之后指向的就是不同的数组了

扩容

扩容会发生在slice append的时候,当slice的cap不足以容纳新元素,就会进行扩容

源码:https://github.com/golang/go/...

func growslice(et *_type, old slice, cap int) slice {
      // 省略一些判断...
    newcap := old.cap
    doublecap := newcap + newcap
    if cap > doublecap {
        newcap = cap
    } else {
        if old.len <1024 {
            newcap = doublecap
        } else {
            // Check 0 
  • 如果新申请容量比两倍原有容量大,那么扩容后容量大小 等于 新申请容量
  • 如果原有 slice 长度小于 1024, 那么每次就扩容为原来的 2 倍
  • 如果原 slice 大于等于 1024, 那么每次扩容就扩为原来的 1.25 倍

内存泄露

由于slice的底层是数组,很可能数组很大,但slice所取的元素数量却很小,这就导致数组占用的绝大多数空间是被浪费的

Case1:

比如下面的代码,如果传入的slice b是很大的,然后引用很小部分给全局量a,那么b未被引用的部分(下标1之后的数据)就不会被释放,造成了所谓的内存泄漏。

var a []int

func test(b []int) {
    a = b[:1] // 和b共用一个底层数组
    return
}

那么只要全局量a在,b就不会被回收。

如何避免?

在这样的场景下注意:如果我们只用到一个slice的一小部分,那么底层的整个数组也将继续保存在内存当中。当这个底层数组很大,或者这样的场景很多时,可能会造成内存急剧增加,造成崩溃。

所以在这样的场景下,我们可以将需要的分片复制到一个新的slice中去,减少内存的占用

var a []int

func test(b []int) {
    a = make([]int, 1)
    copy(a, b[:0])
    return
}

Case2:

比如下面的代码,返回的slice是很小一部分,这样该函数退出后,原来那个体积较大的底层数组也无法被回收

func test2() []int{
    s = make([]int, 0, 10000)
    for i := 0; i <10000; i++ {
        s = append(s, p)
    }
    s2 := s[100:102]
    return s2
}

如何避免?

将需要的分片复制到一个新的slice中去,减少内存的占用

func test2() []int{
    s = make([]int, 0, 10000)
    for i := 0; i <10000; i++ {
      // 一些计算...
        s = append(s, p)
    }
    s2 := make([]int, 2)
    copy(s2, s[100:102])
    return s2
}

切片与数组对比

数组是一个固定长度的,初始化时候必须要指定长度,不指定长度的话就是切片了

数组是值类型,将一个数组赋值给另一个数组时,传递的是一份深拷贝,赋值和函数传参操作都会复制整个数组数据,会占用额外的内存;切片是引用类型,将一个切片赋值给另一个切片时,传递的是一份浅拷贝,赋值和函数传参操作只会复制len和cap,但底层共用同一个数组,不会占用额外的内存。

//a是一个数组,注意数组是一个固定长度的,初始化时候必须要指定长度,不指定长度的话就是切片了
a := [3]int{1, 2, 3}
//b是数组,是a的一份深拷贝
b := a
//c是切片,是引用类型,底层数组是a
c := a[:]
for i := 0; i 
//a是一个切片,不指定长度的话就是切片了
a := []int{1, 2, 3}
//b是切片,是a的一份拷贝
b := a
//c是切片,是引用类型
c := a[:]
for i := 0; i 
总结
  • 创建切片时可根据实际需要预分配容量,尽量避免追加过程中进行扩容操作,有利于提升性能
  • 使用 append() 向切片追加元素时有可能触发扩容,扩容后将会生成新的切片
  • 使用 len()、cap()计算切片长度、容量时,时间复杂度均为 O(1),不需要遍历切片
  • 切片是非线程安全的,如果要实现线程安全,可以加锁或者使用Channel
  • 大数组作为函数参数时,会复制整个数组数据,消耗过多内存,建议使用切片或者指针
  • 切片作为函数参数时,可以改变切片指向的数组,不能改变切片本身len和cap;想要改变切片本身,可以将改变后的切片返回 或者 将切片指针作为函数参数。
  • 如果只用到大slice的一小部分,建议将需要的分片复制到一个新的slice中去,减少内存的占用
本文由博客一文多发平台 OpenWrite 发布!

推荐阅读
  • golang 解析磁力链为 torrent 相关的信息
    其实通过http请求已经获得了种子的信息了,但是传播存储种子好像是违法的,所以就存储些描述信息吧。之前python跑的太慢了。这个go并发不知道写的有没有问题?!packag ... [详细]
  • 本文主要分享【go协程模型】,技术文章【【GORM】模型关系-HasOne】为【VivaPython】投稿,如果你遇到GoWeb相关问题,本文相关知识或能到你。go协程模型一、概述HasO ... [详细]
  • 看到平台银行对接方案写的demo确实还不错记个笔记互相学习学习packageapiimport(cryptotlsnetnethttpstringssynct ... [详细]
  • Go 快速入门指南命令行参数
    命令行参数个数调用os包即可。获取参数个数,遍历参数packagemainimport(fmtos)funcmain(){fmt.Printf(Numberofargsi ... [详细]
  • 集成第三方库,自检测读取配置文件。文件读取,结构体定义,接口实现,错误返回,库解析,适合新同学练手。思路文件读取获取字节流文件类型分析,确定解析api集成第三方解析api管理器定义 ... [详细]
  • Channel是Go中的一个核心类型,你可以把它看成一个管道,通过它并发核心单元就可以发送或者接收数据进行通讯(communication)。类型T表示任意的一种类型双向:chan ... [详细]
  • IhaveconfiguredanactionforaremotenotificationwhenitarrivestomyiOsapp.Iwanttwodiff ... [详细]
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
  • 本文讨论了使用差分约束系统求解House Man跳跃问题的思路与方法。给定一组不同高度,要求从最低点跳跃到最高点,每次跳跃的距离不超过D,并且不能改变给定的顺序。通过建立差分约束系统,将问题转化为图的建立和查询距离的问题。文章详细介绍了建立约束条件的方法,并使用SPFA算法判环并输出结果。同时还讨论了建边方向和跳跃顺序的关系。 ... [详细]
  • Go GUIlxn/walk 学习3.菜单栏和工具栏的具体实现
    本文介绍了使用Go语言的GUI库lxn/walk实现菜单栏和工具栏的具体方法,包括消息窗口的产生、文件放置动作响应和提示框的应用。部分代码来自上一篇博客和lxn/walk官方示例。文章提供了学习GUI开发的实际案例和代码示例。 ... [详细]
  • 本文介绍了Codeforces Round #321 (Div. 2)比赛中的问题Kefa and Dishes,通过状压和spfa算法解决了这个问题。给定一个有向图,求在不超过m步的情况下,能获得的最大权值和。点不能重复走。文章详细介绍了问题的题意、解题思路和代码实现。 ... [详细]
  • 深入理解Java虚拟机的并发编程与性能优化
    本文主要介绍了Java内存模型与线程的相关概念,探讨了并发编程在服务端应用中的重要性。同时,介绍了Java语言和虚拟机提供的工具,帮助开发人员处理并发方面的问题,提高程序的并发能力和性能优化。文章指出,充分利用计算机处理器的能力和协调线程之间的并发操作是提高服务端程序性能的关键。 ... [详细]
  • 本文整理了Java中java.lang.NoSuchMethodError.getMessage()方法的一些代码示例,展示了NoSuchMethodErr ... [详细]
  • vb.net面试题,请大家帮忙,谢谢。如果需要讲详细一点,那就加我QQ531412815第4题,潜在的错误,这里的错误不是常规错误,属于那种只有在运行是才知道的错误:Catchex ... [详细]
  • 七、Golang之切片(slice)-由于数组的长度是固定的,所以有很多的局限性,所以今天讲切片,切片是一个拥有相同类型且长度可变的有序集合,切片和数组两种不同的数据类型,它是基于 ... [详细]
author-avatar
Yyao
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有