热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

超分辨率技术的全球研究进展与应用现状综述

本文综述了图像超分辨率(Super-Resolution,SR)技术在全球范围内的最新研究进展及其应用现状。超分辨率技术旨在从单幅或多幅低分辨率(Low-Resolution,LR)图像中恢复出高质量的高分辨率(High-Resolution,HR)图像。该技术在遥感、医疗成像、视频处理等多个领域展现出广泛的应用前景。文章详细分析了当前主流的超分辨率算法,包括基于传统方法和深度学习的方法,并探讨了其在实际应用中的优缺点及未来发展方向。

  图像超分辨率率(super resolution,SR)是指由一幅低分辨率图像(low resolution,LR)或图像序列恢复出高分辨率图像(high resolution,HR)。HR意味着图像具有高像素密度,可以提供更多的细节,这些细节往往在应用中起到关键作用。要获得高分辨率图像,最直接的办法是采用高分辨率图像传感器,但由于传感器和光学器件制造工艺和成本的限制,在很多场合和大规模部署中很难实现。因此,利用现有的设备,通过超分辨率技术获取HR图像具有重要的现实意义。

(一)国外研究现状

  超分辨率概念最早出现在光学领域。在该领域中,超分辨率是指试图复原衍射极限以外数据的过程。Toraldo di Francia在1955年的雷达文献中关于光学成像第一次提出了超分辨率的概念。复原的概念最早是由J.L.Harris和J.w.Goodman分别于1964年和1965年提出一种称为Harris-Goodman频谱外推的方法。这些算法在某些假设条件下得到较好的仿真结果,但实际应用中效果并不理想。Tsai&Huang首先提出了基于序列或多帧图像的超分辨率重建问题。1982,D.C.C.Youla和H.Webb在总结前人的基础上,提出了凸集投影图像复原(Pocs)方法。1986年,S.E.Meinel提出了服从泊松分布的最大似然复原(泊松-ML)方法。1991年和1992年,B.R.Hunt和PJ.Sementilli在Bayes分析的基础上,提出了泊松最大后验概率复原(泊松-MAP)方法,并于1993年对超分辨率的定义和特性进行了分析,提出了图像超分辨率的能力取决于物体的空间限制、噪声和采样间隔。

  近年来,图像超分辨率研究比较活跃,美国加州大学Milanfar等人提出的大量实用超分辨率图像复原算法, Chan等人从总变差正则方面,Zhao等人、Nagy等人从数学方法、多帧图像的去卷积和彩色图像的超分辨率增强方面,对超分辨率图像恢复进行了研究。Chan等人研究了超分辨率图像恢复的预处理迭代算法。此外,Elad等人对包含任意图像运动的超分辨率恢复进行了研究;Rajan和Wood等人分别从物理学和成像透镜散射的角度提出了新的超分辨率图像恢复方法;韩国Pohang理工大学对各向异性扩散用于超分辨率。Chung-Ang图像科学和多媒体与电影学院在基于融合的自适应正则超分辨率方面分别进行了研究。Yang等人提出了使用图形块的稀疏表示来实现超分辨率。他们从一些高分辨率图像中随机选取一些块组成一个过完备的词典,接着对于每一个测试块,通过线性规划的方法求得该测试块在这个过完备的词典下的稀疏表示,最后以这组系数加权重构出高分辨率的图像,这种方法克服了邻域嵌入方法中对于邻域大小的选择问题,即在求解稀疏表示的时候,无需指定重构所需要基的个数,其表示系数和基的个数将同时通过线性规划求解得到。然而,目前该方法的缺陷就在于过完备词典的选择,随机的选择只能实现特定领域的图像的超分辨率,对于通用图像的超分辨率效果较差。

(二)国内研究现状

  国内许多科研院所和大学等对超分辨率图像恢复进行研究,其中部分是关于频谱外推、混叠效应的消除,其他主要是对国外超分辨率方法所进行的改进,包括对POCS算法和MAP算法的改进,对超分辨率插值方法的改进,基于小波域隐马尔可夫树(HMT)模型对彩色图像超分辨率方法的改进以及对超分辨率图像重构方法的改进。

  2016年香港中文大学Dong等人将卷积神经网络应用于单张图像超分辨率重建上完成了深度学习在图像超分辨率重建问题的开山之作SRCNN(Super-Resolution Convolutional Neural Network)。SRCNN将深度学习与传统稀疏编码之间的关系作为依据,将3层网络划分为图像块提取(Patch extraction and representation)、非线性映射(Non-linear mapping)以及最终的重建(Reconstruction)。重建效果远远优于其他传统算法,利用SRCNN进行超分辨率图像重建与使用其他方法进行超分辨率重建的效果对比图如下图1所示。

 

 

图1 SRCNN图像重建与其他重建方式效果对比图

 

Learning a Deep Convolutional Network for Image Super-Resolution http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html

论文:

Learning a Deep Convolutional Network for Image Super-Resolution

Image Super-Resolution Using Deep Convolutional Networks


推荐阅读
  • 本文档详细介绍了服务器与应用系统迁移的策略与实施步骤。迁移不仅涉及数据的转移,还包括环境配置、应用兼容性测试等多个方面,旨在确保迁移过程的顺利进行及迁移后的系统稳定运行。 ... [详细]
  • Python图像处理库概览
    本文详细介绍了Python中常用的图像处理库,包括scikit-image、Numpy、Scipy、Pillow、OpenCV-Python、SimpleCV、Mahotas、SimpleITK、pgmagick和Pycairo,旨在帮助开发者和研究人员选择合适的工具进行图像处理任务。 ... [详细]
  • 本文探讨了为何采用RESTful架构及其优势,特别是在现代Web应用开发中的重要性。通过前后端分离和统一接口设计,RESTful API能够提高开发效率,支持多种客户端,并简化维护。 ... [详细]
  • 本文介绍了一个使用Keras框架构建的卷积神经网络(CNN)实例,主要利用了Keras提供的MNIST数据集以及相关的层,如Dense、Dropout、Activation等,构建了一个具有两层卷积和两层全连接层的CNN模型。 ... [详细]
  • 解决getallheaders函数导致的500错误及8种服务器性能优化策略
    本文探讨了解决getallheaders函数引起的服务器500错误的方法,并介绍八种有效的服务器性能优化技术,包括内存数据库的应用、Spark RDD的使用、缓存策略的实施、SSD的引入、数据库优化、IO模型的选择、多核处理策略以及分布式部署方案。 ... [详细]
  • 本文介绍了如何在 Linux 系统上构建网络路由器,特别关注于使用 Zebra 软件实现动态路由功能。通过具体的案例,展示了如何配置 RIP 和 OSPF 协议,以及如何利用多路由器查看工具(MRLG)监控网络状态。 ... [详细]
  • Python作为一种广泛使用的高级编程语言,以其简洁的语法、强大的功能和丰富的库支持著称。本文将详细介绍Python的主要特点及其在现代软件开发中的应用。 ... [详细]
  • 手把手教你构建简易JSON解析器
    本文将带你深入了解JSON解析器的构建过程,通过实践掌握JSON解析的基本原理。适合所有对数据解析感兴趣的开发者。 ... [详细]
  • 本文深入探讨了Java注解的基本概念及其在现代Java开发中的应用。文章不仅介绍了如何创建和使用自定义注解,还详细讲解了如何利用反射机制解析注解,以及Java内建注解的使用场景。 ... [详细]
  • 导读上一篇讲了zsh的常用字符串操作,这篇开始讲更为琐碎的转义字符和格式化输出相关内容。包括转义字符、引号、print、printf的使用等等。其中很多内容没有必要记忆,作为手册参 ... [详细]
  • 本文详细探讨了在Windows Server 2003环境下遇到MySQL连接失败(错误代码10061)的解决方案,包括通过卸载特定的Windows更新和调整系统注册表设置的方法。 ... [详细]
  • 探讨如何利用先进的算法实现不同电商平台间商品的精准匹配。 ... [详细]
  • 本文旨在介绍Three.js的基础概念及其应用场景。Three.js是一个基于WebGL的JavaScript库,用于在网页上创建和显示3D图形。文中将从Canvas的基本功能出发,探讨其局限性,并引出WebGL及Three.js的解决方案。 ... [详细]
  • 本文深入探讨了OpenCV中的Canny边缘检测算法,并通过具体的Python代码实例展示了如何实现特定区域的轮廓线提取。适合初学者和专业人士参考。 ... [详细]
  • 本文详细介绍了Java中`org.sakaiproject.site.api.Site.addPage()`方法的功能和使用方法,并提供了多个实际项目中的代码示例。 ... [详细]
author-avatar
mobiledu2502882733
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有