热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

C语言实现的排列组合问题的通用算法、解决方法

这篇文章主要介绍了C语言实现的排列组合问题的通用算法、解决方法,本文使用C语言实现在程序中解决这个问题,需要的朋友可以参考下

尽管排列组合是生活中经常遇到的问题,可在程序设计时,不深入思考或者经验不足都让人无从下手。由于排列组合问题总是先取组合再排列,并且单纯的排列问题相对简单,所以本文仅对组合问题的实现进行详细讨论。以在n个数中选取m(0

1. 首先从n个数中选取编号最大的数,然后在剩下的n-1个数里面选取m-1个数,直到从n-(m-1)个数中选取1个数为止。

2. 从n个数中选取编号次小的一个数,继续执行1步,直到当前可选编号最大的数为m。

很明显,上述方法是一个递归的过程,也就是说用递归的方法可以很干净利索地求得所有组合。

下面是递归方法的实现:

代码如下:

/// 求从数组a[1..n]中任选m个元素的所有组合。
/// a[1..n]表示候选集,n为候选集大小,n>=m>0。
/// b[1..M]用来存储当前组合中的元素(这里存储的是元素下标),
/// 常量M表示满足条件的一个组合中元素的个数,M=m,这两个参数仅用来输出结果。
void combine( int a[], int n, int m,  int b[], const int M )
{
 for(int i=n; i>=m; i--)   // 注意这里的循环范围
 {
  b[m-1] = i - 1;
  if (m > 1)
   combine(a,i-1,m-1,b,M);
  else                     // m == 1, 输出一个组合
  {  
   for(int j=M-1; j>=0; j--)
    cout <    cout <   }
 }
}

因为递归程序均可以通过引入栈,用回溯转化为相应的非递归程序,所以组合问题又可以用回溯的方法来解决。为了便于理解,我们可以把组合问题化归为图的路径遍历问题,在n个数中选取m个数的所有组合,相当于在一个这样的图中(下面以从1,2,3,4中任选3个数为例说明)求从[1,1]位置出发到达[m,x](m<=x<=n)位置的所有路径:
代码如下:

1  2  3  4
    2  3  4
        3  4

上图是截取n×n右上对角矩阵的前m行构成,如果把矩矩中的每个元素看作图中的一个节点,我们要求的所有组合就相当于从第一行的第一列元素[1,1]出发,到第三行的任意一列元素作为结束的所有路径,规定只有相邻行之间的节点,并且下一行的节点必须处于上一行节点右面才有路径相连,其他情况都无路径相通。显然,任一路径经过的数字序列就对应一个符合要求的组合。

下面是非递归的回溯方法的实现:

代码如下:
/// 求从数组a[1..n]中任选m个元素的所有组合。
/// a[1..n]表示候选集,m表示一个组合的元素个数。
/// 返回所有组合的总数。
int combine(int a[], int n, int m)
{  
 m = m > n &#63; n : m;

 int* order = new int[m+1];   
 for(int i=0; i<=m; i++)
  order[i] = i-1;            // 注意这里order[0]=-1用来作为循环判断标识
 
 int count = 0;                               
 int k = m;
 bool flag = true;           // 标志找到一个有效组合
 while(order[0] == -1)
 {
  if(flag)                   // 输出符合要求的组合
  {  
   for(i=1; i<=m; i++)                   
    cout <    cout <    count++;
   flag = false;
  }

  order[k]++;                // 在当前位置选择新的数字
  if(order[k] == n)          // 当前位置已无数字可选,回溯
  {
   order[k--] = 0;
   continue;
  }    
 
  if(k   {
   order[++k] = order[k-1];
   continue;
  }
 
  if(k == m)
   flag = true;
 }

 delete[] order;
 return count;
}


下面是测试以上函数的程序:
代码如下:

int main()
{
 const int N = 4;
 const int M = 3;
 int a[N];
 for(int i=0;i   a[i] = i+1;

 // 回溯方法
 cout <

 // 递归方法
 int b[M];
 combine(a,N,M,b,M);

 return 0;
}


由上述分析可知,解决组合问题的通用算法不外乎递归和回溯两种。在针对具体问题的时候,因为递归程序在递归层数上的限制,对于大型组合问题而言,递归不是一个好的选择,这种情况下只能采取回溯的方法来解决。

n个数的全排列问题相对简单,可以通过交换位置按序枚举来实现。STL提供了求某个序列下一个排列的算法next_permutation,其算法原理如下:
1. 从当前序列最尾端开始往前寻找两个相邻元素,令前面一个元素为*i,后一个元素为*ii,且满足*i<*ii;

2. 再次从当前序列末端开始向前扫描,找出第一个大于*i的元素,令为*j(j可能等于ii),将i,j元素对调;

3. 将ii之后(含ii)的所有元素颠倒次序,这样所得的排列即为当前序列的下一个排列。

其实现代码如下:

代码如下:

template
bool next_permutation(BidirectionalIterator first, BidirectionalIterator last)
{
  if (first == last) return false;   // 空範圍
  BidirectionalIterator i = first;
  ++i;
  if (i == last) return false;       // 只有一個元素
  i = last;                          // i 指向尾端
  --i;

 for(;;)
 {
  BidirectionalIterator ii = i;
  --i;
  // 以上,鎖定一組(兩個)相鄰元素
  if (*i <*ii)                     // 如果前一個元素小於後一個元素
  {
   BidirectionalIterator j = last;  // 令 j指向尾端
   while (!(*i <*--j));            // 由尾端往前找,直到遇上比 *i 大的元素
   iter_swap(i, j);                 // 交換 i, j
   reverse(ii, last);               // 將 ii 之後的元素全部逆向重排
   return true;
  }
  if (i == first)                   // 進行至最前面了
  {
   reverse(first, last);            // 全部逆向重排
   return false;
  }
 }
}


下面程序演示了利用next_permutation来求取某个序列全排列的方法:
代码如下:

int main()
{
 int ia[] = {1,2,3,4};
 vector iv(ia,ia+sizeof(ia)/sizeof(int));

 copy(iv.begin(),iv.end(),ostream_iterator(cout," "));
 cout <  while(next_permutation(iv.begin(),iv.end()))
 {
  copy(iv.begin(),iv.end(),ostream_iterator(cout," "));
  cout <  }

 return 0;
}


注意:上面程序中初始序列是按数值的从小到大的顺序排列的,如果初始序列无序的话,上面程序只能求出从当前序列开始的后续部分排列,也就是说next_permutation求出的排列是按排列从小到大的顺序进行的。


推荐阅读
  • Søren Kierkegaard famously stated that life can only be understood in retrospect but must be lived moving forward. This perspective delves into the intricate relationship between our lived experiences and our reflections on them. ... [详细]
  • 计算机网络复习:第五章 网络层控制平面
    本文探讨了网络层的控制平面,包括转发和路由选择的基本原理。转发在数据平面上实现,通过配置路由器中的转发表完成;而路由选择则在控制平面上进行,涉及路由器中路由表的配置与更新。此外,文章还介绍了ICMP协议、两种控制平面的实现方法、路由选择算法及其分类等内容。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文探讨如何设计一个安全的加密和验证算法,确保生成的密码具有高随机性和低重复率,并提供相应的验证机制。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 在金融和会计领域,准确无误地填写票据和结算凭证至关重要。这些文件不仅是支付结算和现金收付的重要依据,还直接关系到交易的安全性和准确性。本文介绍了一种使用C语言实现小写金额转换为大写金额的方法,确保数据的标准化和规范化。 ... [详细]
  • 在给定的数组中,除了一个数字外,其他所有数字都是相同的。任务是找到这个唯一的不同数字。例如,findUniq([1, 1, 1, 2, 1, 1]) 返回 2,findUniq([0, 0, 0.55, 0, 0]) 返回 0.55。 ... [详细]
  • 本文探讨了卷积神经网络(CNN)中感受野的概念及其与锚框(anchor box)的关系。感受野定义了特征图上每个像素点对应的输入图像区域大小,而锚框则是在每个像素中心生成的多个不同尺寸和宽高比的边界框。两者在目标检测任务中起到关键作用。 ... [详细]
  • 网络攻防实战:从HTTP到HTTPS的演变
    本文通过一系列日记记录了从发现漏洞到逐步加强安全措施的过程,探讨了如何应对网络攻击并最终实现全面的安全防护。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
author-avatar
mobiledu2502918033
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有