热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

CNN卷积层:ReLU函数,RectifiedLinearUnits)激活函数

卷积层的非线性部分一、ReLU定义ReLU:全称 RectifiedLinearUnits)激活函数定义defrelu(x):returnxifx0else0#Softplu

卷积层的非线性部分

一、ReLU定义

ReLU:全称 Rectified Linear Units)激活函数

定义

def relu(x):

  return x if x >0 else 0

《CNN卷积层:ReLU函数,Rectified Linear Units)激活函数》

#Softplus为ReLU的平滑版

 

二、传统sigmoid系激活函数

《CNN卷积层:ReLU函数,Rectified Linear Units)激活函数》

Sigmoid与人的神经反应很相似,在很多浅层模型上发挥巨大作用

传统神经网络中最常用的两个激活函数,Sigmoid系(Logistic-Sigmoid、Tanh-Sigmoid)被视为神经网络的核心所在。

从数学上来看,非线性的Sigmoid函数对中央区的信号增益较大,对两侧区的信号增益小,在信号的特征空间映射上,有很好的效果。

从神经科学上来看,中央区酷似神经元的兴奋态,两侧区酷似神经元的抑制态,因而在神经网络学习方面,可以将重点特征推向中央区,将非重点特征推向两侧区。

无论是哪种解释,看起来都比早期的线性激活函数(y=x),阶跃激活函数(-1/1,0/1)高明了不少。

 

梯度消失问题

 sigmoid导数值的范围(0,  0.25)

tanh的导数值范围(0, 1)

可以看出sigmoid的弱点:对于深度网络,sigmoid在最好的情况下也会把传递的导数数值缩小至0.25倍,下层网络得到的梯度值明显小很多。这会导致模型训练效果很差

对于浅层网络这种影响不明显,但对于深度网络,反向传导逐渐变成了一个“漫长累积”的过程。

 

从训练效果看,以不同激活函数的LeNet模型,训练迭代数与Loss的关系——

sigmoid明显弱一些,tanh与ReLU相近

 

ReLU的优点:没有出现梯度消失问题

 

三、ReLU的线性性质

作为一个非线性函数,它还具备线性性质

     1 0 0

   [ 0 1 0 ]  x 向量 = 结果

     0 0 0

 对线性部分的输出,结果等效于左乘一个非0即1的对角阵(向量负数位置对应对角阵位置上为0),仍可以被看作是一个线性操作

这一性质会使模型的理论分析变得简单

 

四、ReLU的不足

1:过于宽广的接受域,在接受较大数据时出现不稳定

可以对输入数据上界进行限制,比如ReLU6

2:负数方向

输入数据的负数部分,ReLU会把它置为0,那么梯度也为0,训练过程中负数部分不会更新

解决:一系列的改进函数,比如 Leaky ReLU


推荐阅读
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • LeetCode 实战:寻找三数之和为零的组合
    给定一个包含 n 个整数的数组,判断该数组中是否存在三个元素 a、b、c,使得 a + b + c = 0。找出所有满足条件且不重复的三元组。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 对象存储与块存储、文件存储等对比
    看到一篇文档,讲对象存储,好奇,搜索文章,摘抄,学习记录!背景:传统存储在面对海量非结构化数据时,在存储、分享与容灾上面临很大的挑战,主要表现在以下几个方面:传统存储并非为非结 ... [详细]
  • PHP函数的工作原理与性能分析
    在编程语言中,函数是最基本的组成单元。本文将探讨PHP函数的特点、调用机制以及性能表现,并通过实际测试给出优化建议。 ... [详细]
  • Redis 是一个高性能的开源键值存储系统,支持多种数据结构。本文将详细介绍 Redis 中的六种底层数据结构及其在对象系统中的应用,包括字符串对象、列表对象、哈希对象、集合对象和有序集合对象。通过12张图解,帮助读者全面理解 Redis 的数据结构和对象系统。 ... [详细]
  • 自动驾驶中的9种传感器融合算法
    来源丨AI修炼之路在自动驾驶汽车中,传感器融合是融合来自多个传感器数据的过程。该步骤在机器人技术中是强制性的,因为它提供了更高的可靠性、冗余性以及最终的 ... [详细]
  • 本文详细介绍了 Java 网站开发的相关资源和步骤,包括常用网站、开发环境和框架选择。 ... [详细]
  • 兆芯X86 CPU架构的演进与现状(国产CPU系列)
    本文详细介绍了兆芯X86 CPU架构的发展历程,从公司成立背景到关键技术授权,再到具体芯片架构的演进,全面解析了兆芯在国产CPU领域的贡献与挑战。 ... [详细]
  • 短暂的人生中,IT和技术只是其中的一部分。无论换工作还是换行业,最终的目标是成功、荣誉和收获。本文探讨了技术人员如何跳出纯技术的局限,实现更大的职业发展。 ... [详细]
  • 专业人士如何做自媒体 ... [详细]
  • 三角测量计算三维坐标的代码_双目三维重建——层次化重建思考
    双目三维重建——层次化重建思考FesianXu2020.7.22atANTFINANCIALintern前言本文是笔者阅读[1]第10章内容的笔记,本文从宏观的角度阐 ... [详细]
  • 如何撰写数据分析师(包括转行者)的面试简历?
    CDA数据分析师团队出品,作者:徐杨老师,编辑:Mika。本文将帮助您了解如何撰写一份高质量的数据分析师简历,特别是对于转行者。 ... [详细]
  • 深入解析国内AEB应用:摄像头和毫米波雷达融合技术的现状与前景
    本文作者程建伟,武汉极目智能技术有限公司CEO,入选武汉市“光谷3551人才计划”。文章详细探讨了国内自动紧急制动(AEB)系统中摄像头与毫米波雷达融合技术的现状及未来前景。通过分析当前技术的应用情况、存在的挑战以及潜在的解决方案,作者指出,随着传感器技术的不断进步和算法优化,AEB系统的性能将大幅提升,为交通安全带来显著改善。 ... [详细]
  • 帝国CMS中的信息归档功能详解及其重要性
    本文详细解析了帝国CMS中的信息归档功能,并探讨了其在内容管理中的重要性。通过归档功能,用户可以有效地管理和组织大量内容,提高网站的运行效率和用户体验。此外,文章还介绍了如何利用该功能进行数据备份和恢复,确保网站数据的安全性和完整性。 ... [详细]
author-avatar
jesusestella
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有