题解:先解决另一个简单的问题,如果是一个链,把红球标记为1,蓝球标记为0,要排成升序需要多少次交换呢?答案是逆序对总数,原因是一次交互最多消除一个逆序对,而且有策略可以保证每次消除一个逆序对。要解决这个问题,需要做一些变通。看蓝球,因为是环,为了使交换次数最小,前半段的蓝球应该往前靠,所以在后半段的蓝球应该往后靠。那么就把原序列划分成两半,前面一段记红球为1,蓝球为0,后面一段记蓝球为1,红球为0,然后分别计算逆序对数,就可以求出以0位置前为中心的逆序数。然后在枚举中心的位置,枚举的时候,可以在O(1)时间计算出新的逆序值,具体方法是只考虑端点处的小球对左右区间逆序值的影响。
记左区间长度为b1,把中心移动到b1+i球的后面,那么b1+i位置的球会加入左区间,i号球则加入到右区间,当b1+i号球是R的时候,它对左右两边的逆序值都是没有影响的,(对于右区间,R是0,对于左区间,R是1),当它是B的时候,对于右区间,逆序对总数减少了原来右区间中0的个数,对于左区间,增加了i移动之后1的个数。对于i的移动,类似地讨论一下。
#include
#include
#include
#include