作者:手机用户2702932415_836 | 来源:互联网 | 2024-09-28 08:45
在医院实际环境中,经常遇到有问题的患者,对于一些特殊的场景,比如骨折,肺结节,心脑血管问题需要图像对比增强来更为清晰的显示病灶助于医生确诊,先看效果: 肺纹理增强:肺
在医院实际环境中,经常遇到有问题的患者,对于一些特殊的场景,比如骨折,肺结节,心脑血管问题
需要图像对比增强来更为清晰的显示病灶助于医生确诊,先看效果:
肺纹理增强:
肺结节增强:
血管对比增强:
骨骼对比增强:
根据参考资料:
MATLAB版本:
https://ww2.mathworks.cn/matlabcentral/fileexchange/24409-hessian-based-frangi-vesselness-filter
算法原理:
https://baike.baidu.com/item/%E9%BB%91%E5%A1%9E%E7%9F%A9%E9%98%B5/2248782?fr=aladdin
将其原理翻译写成C++类库,在C++中使用Opencv对于矩阵操作比较方便,导出dll后再由C#调用,
新建C++类库工程:
#include "stdafx.h"
#include
#include <string>
#include
#include
#include
#include "MatBase64.h"
#include "frangi.h"
#include "ET.Functions.h"
using namespace std;
using namespace cv;
char* GetFrangiBase64Code(char* base64code, int SIGMA_START, int SIGMA_END, int SIGMA_STEP, float BETA_ONE, float BETA_TWO, bool BLACKWHITE){
//初始化矩阵参数
frangi2d_opts_t opts;
frangi2d_createopts(&opts, SIGMA_START, SIGMA_END, SIGMA_STEP, BETA_ONE, BETA_TWO, BLACKWHITE);
//处理传入的base64编码转为Mat对象
string imgcode =base64code;
string s_mat;
s_mat = base64Decode(imgcode.data(), imgcode.size());
vector<char> base64_img(s_mat.begin(), s_mat.end());
Mat input_img = cv::imdecode(Mat(base64_img), CV_LOAD_IMAGE_GRAYSCALE);
//进行frangi算法处理
Mat input_img_fl;
input_img.convertTo(input_img_fl, CV_32FC1);
Mat vesselness, scale, angles;
frangi2d(input_img_fl, vesselness, scale, angles, opts);
vector buf;
imencode(".jpg", vesselness * 255, buf);
auto *enc_msg = reinterpret_castchar*>(buf.data());
string encoded = base64Encode(enc_msg, buf.size());
//返回base64编码
char *result = new char[encoded.length() + 1];
for (int i = 0; i i)
{
result[i] = encoded[i];
}
result[encoded.length()] = '#include "stdafx.h"
#include
#include <string>
#include
#include
#include
#include "MatBase64.h"
#include "frangi.h"
#include "ET.Functions.h"
using namespace std;
using namespace cv;
char* GetFrangiBase64Code(char* base64code, int SIGMA_START, int SIGMA_END, int SIGMA_STEP, float BETA_ONE, float BETA_TWO, bool BLACKWHITE){
//初始化矩阵参数
frangi2d_opts_t opts;
frangi2d_createopts(&opts, SIGMA_START, SIGMA_END, SIGMA_STEP, BETA_ONE, BETA_TWO, BLACKWHITE);
//处理传入的base64编码转为Mat对象
string imgcode =base64code;
string s_mat;
s_mat = base64Decode(imgcode.data(), imgcode.size());
vector<char> base64_img(s_mat.begin(), s_mat.end());
Mat input_img = cv::imdecode(Mat(base64_img), CV_LOAD_IMAGE_GRAYSCALE);
//进行frangi算法处理
Mat input_img_fl;
input_img.convertTo(input_img_fl, CV_32FC1);
Mat vesselness, scale, angles;
frangi2d(input_img_fl, vesselness, scale, angles, opts);
vector buf;
imencode(".jpg", vesselness * 255, buf);
auto *enc_msg = reinterpret_castchar*>(buf.data());
string encoded = base64Encode(enc_msg, buf.size());
//返回base64编码
char *result = new char[encoded.length() + 1];
for (int i = 0; i i)
{
result[i]
= encoded[i];
}
result[encoded.length()] = '\0';
return result;
}';
return result;
}
导出函数:
extern "C" _declspec(dllexport) char* GetFrangiBase64Code(char * base64code, int SIGMA_START, int SIGMA_END, int SIGMA_STEP, float BETA_ONE, float BETA_TWO, bool BLACKWHITE);
创建模块定义文件:
LIBRARY "ET.Functions"
EXPORTS
GetFrangiBase64Code @ 1,
导出32位dll,复制到C#debug目录下,C#调用:将目标图像转为base64,发送给C++,返回处理后的base64,在转为图像
[DllImport(@"ET.Functions.dll", EntryPoint = "GetFrangiBase64Code" ,CallingCOnvention= CallingConvention.Cdecl)]
public static extern IntPtr GetFrangiBase64Code(string base64code, int SIGMA_START, int SIGMA_END, int SIGMA_STEP, float BETA_ONE, float BETA_TWO, bool BLACKWHITE);
private void ckcbw_CheckedChanged(object sender, EventArgs e)
{
getimg();
}
private void trabarStart_ValueChanged(object sender, EventArgs e)
{
getimg();
}
void getimg()
{
int start = trabarStart.Value;
int end = trabarEnd.Value;
int step = trabarStep.Value;
float zaosheng = (float)trabarZaosheng.Value / 10;
float bg = (float)trabarBG.Value / 10;
IntPtr pRet = GetFrangiBase64Code(ToBase64(b), start, end, step, zaosheng, bg, ckcbw.Checked);
string strRet = Marshal.PtrToStringAnsi(pRet);
pictureBox1.BackgroundImage = Base64StringToImage(strRet);
}
如果不想用C++,直接用C#里面的opencv库也可以,直接用nuget搜索EmguCV,需要自己将MatLab代码或C++代码翻译成C#
通过调整各个参数来达到想要的效果: