热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

C++插入排序算法实例详解

这篇文章主要为大家详细介绍了C++插入排序算法实例,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了C++插入排序算法实例的具体代码,供大家参考,具体内容如下

基本思想

每次将一个待排序的元素,按其大小插入到已经排好序的子序列的适当位置,知道全部元素插入完成为止。

直接插入排序

1.排序思路

arr[0...i-1]为有序区(刚开始时i=1,有序区只有arr[0]一个元素),arr[i...size]为待排序区,每次将待排序区的第一个元素arr[i]插入到有序区中的适当位置,每趟操作都使有序区增加一个元素,待排序区减少一个元素。

2.排序算法

void InsertSort(int* arr, int size) 
{ 
  if (arr == NULL) 
    return; 
 
  for (int i = 1; i = 0 && tmp 

3.算法分析

直接插入排序由两重循环构成,外循环进行n-1次。
若初始数据序列递增有序即为正序时,每一趟排序不进入内循环,仅进行一次大小比较。此时元素移动次数为2次(tmp = arr[i]和arr[j+1] = tmp)。所以正序时比较次数和元素移动次数均达到最小值Cmin和Mmin:

Cmin = n-1
Mmin = 2(n-1)

若初始数据序列递减有序即为逆序时,因当前有序区的元素均大于待排序区的元素,所以需要将待插入元素与arr[0...i-1]中全部元素进行比较,这需要进行i次比较;内循环中需将arr[0...i-1]中所有元素后移(i-1)-0+1 = i次,外加tmp = arr[i]和arr[j+1] = tmp的两次移动,一趟排序所需的元素移动次数为i+2次。所以逆序时比较次数和元素移动次数均达到最da值Cmax和Mmax:

Cmax = n(n-1) / 2
Mmax = (n-1)(n+4) / 2

正序时直接插入排序算法的时间复杂度为O(N),逆序时直接插入排序算法的时间复杂度为O(N^2)。
故直接插入排序算法的时间复杂度为O(N^2)。由于只使用了i、j、tmp三个辅助变量,故空间复杂度为O(1)。
当i > j且arr[i] = arr[j]时,直接将arr[i]插入到arr[j]后,故直接插入排序是稳定的。

折半插入排序(二分插入排序)

1.排序思路

采用折半查找方法先在arr[0...i-1]中找到插入位置,再通过移动元素进行插入
2.排序算法

void InsertSort1(int* arr, int size) 
{ 
  if (arr == NULL) 
    return; 
 
  int i, j, low, high; 
  //1.保存要插入的数 
  for (i = 1; i > 1); 
      if (tmp = high + 1; j--) 
    { 
      arr[j + 1] = arr[j]; 
    } 
    arr[j + 1] = tmp; 
  }   
} 

3.算法分析

当初始数据序列为正序时,比较次数并不能减少;当为逆序时,比较次数也不会增加。元素移动次数与直接插入排序相同。
故折半插入排序的时间复杂度为O(N^2),空间复杂度为O(1),是稳定的。
就平均性能而言,折半查找优于顺序查找,所以折半插入排序优于直接插入排序。

希尔排序

1.排序思路

希尔排序是一种分组插入排序。先取一个小于n的整数d1,作为第一个增量,序列被分为d1组,所有相互之间距离为d1的倍数的元素放在同一个组中,在各组内进行直接插入排序;然后取第二个增量d2( 希尔排序每趟并不产生有序区,在最后一趟排序结束之前,所有元素并不一定归位,每趟排完之后,数据越来越接近有序。

2.排序算法

void ShellSort(int* arr, int size) 
{ 
  if (arr == NULL) 
    return; 
 
  int i, j, gap; 
  //1.取gap 
  gap = size / 2; 
  while (gap > 0) 
  { 
    //2.分组比较 
    for (i = gap; i = 0 && tmp 

3.算法分析

希尔排序算法的性能分析是一个复杂的问题,它的时间复杂度与所取gap有关,一般认为其时间复杂度为O(N^1.3),空间复杂度为O(1)。
希尔排序是一种不稳定的算法。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


推荐阅读
  • 本文详细探讨了KMP算法中next数组的构建及其应用,重点分析了未改良和改良后的next数组在字符串匹配中的作用。通过具体实例和代码实现,帮助读者更好地理解KMP算法的核心原理。 ... [详细]
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 本文介绍如何利用动态规划算法解决经典的0-1背包问题。通过具体实例和代码实现,详细解释了在给定容量的背包中选择若干物品以最大化总价值的过程。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文探讨如何设计一个安全的加密和验证算法,确保生成的密码具有高随机性和低重复率,并提供相应的验证机制。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 在金融和会计领域,准确无误地填写票据和结算凭证至关重要。这些文件不仅是支付结算和现金收付的重要依据,还直接关系到交易的安全性和准确性。本文介绍了一种使用C语言实现小写金额转换为大写金额的方法,确保数据的标准化和规范化。 ... [详细]
  • 在给定的数组中,除了一个数字外,其他所有数字都是相同的。任务是找到这个唯一的不同数字。例如,findUniq([1, 1, 1, 2, 1, 1]) 返回 2,findUniq([0, 0, 0.55, 0, 0]) 返回 0.55。 ... [详细]
  • 本文探讨了卷积神经网络(CNN)中感受野的概念及其与锚框(anchor box)的关系。感受野定义了特征图上每个像素点对应的输入图像区域大小,而锚框则是在每个像素中心生成的多个不同尺寸和宽高比的边界框。两者在目标检测任务中起到关键作用。 ... [详细]
author-avatar
书友53099678
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有