热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【博学谷学习记录】大数据课程学习第五周总结

Hadoop概述Hadoop介绍Hadoop是Apache旗下的一个用java语言实现开源软件框架,是一个开发和运行处理大规模数据的软件平台。允许使用简单的编程模


Hadoop概述


Hadoop介绍

Hadoop是Apache旗下的一个用java语言实现开源软件框架,是一个开发和运行处理大规模数据的软件平台。允许使用简单的编程模型在大量计算机集群上对大型数据集进行分布式处理。
狭义上说,Hadoop指Apache这款开源框架,它的核心组件有:
HDFS(分布式文件系统):解决海量数据存储
YARN(作业调度和集群资源管理的框架):解决资源任务调度
MAPREDUCE(分布式运算编程框架):解决海量数据计算

广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。
在这里插入图片描述
框架 用途
HDFS 分布式文件系统
MapReduce 分布式运算程序开发框架
ZooKeeper 分布式协调服务基础组件
HIVE 基于HADOOP的分布式数据仓库,提供基于SQL的查询数据操作
FLUME 日志数据采集框架
oozie 工作流调度框架
Sqoop 数据导入导出工具(比如用于mysql和HDFS之间)
Impala 基于hive的实时sql查询分析
Mahout 基于mapreduce/spark/flink等分布式运算框架的机器学习算法库


Hadoop特性优点

扩容能力(Scalable):Hadoop是在可用的计算机集群间分配数据并完成计算任务的,这些集群可用方便的扩展到数以千计的节点中。
成本低(Economical):Hadoop通过普通廉价的机器组成服务器集群来分发以及处理数据,以至于成本很低。
高效率(Efficient):通过并发数据,Hadoop可以在节点之间动态并行的移动数据,使得速度非常快。
可靠性(Rellable):能自动维护数据的多份复制,并且在任务失败后能自动地重新部署(redeploy)计算任务。所以Hadoop的按位存储和处理数据的能力值得人们信赖。


Hadoop历史版本

•1.x版本系列:hadoop版本当中的第二代开源版本,主要修复0.x版本的一些bug等,该版本已被淘汰
•2.x版本系列:架构产生重大变化,引入了yarn平台等许多新特性,是现在使用的主流版本。
3.x版本系列:对HDFS、MapReduce、YARN都有较大升级,还新增了Ozone key-value存储。


Hadoop发行版公司

Hadoop发行版本分为开源社区版和商业版。社区版是指由Apache软件基金会维护的版本,是官方维护的版本体系。
商业版Hadoop是指由第三方商业公司在社区版Hadoop基础上进行了一些修改、整合以及各个服务组件兼容性测试而发行的版本,比较著名的有cloudera的CDH、mapR、hortonWorks等


社区版

一、免费开源版本Apache:
http://hadoop.apache.org/
优点:拥有全世界的开源贡献者,代码更新迭代版本比较快,
缺点:版本的升级,版本的维护,版本的兼容性,版本的补丁都可能考虑不太周到
Apache所有软件的下载地址(包括各种历史版本):http://archive.apache.org/dist/

二、免费开源版本HortonWorks:
hortonworks主要是雅虎主导Hadoop开发的副总裁,带领二十几个核心成员成立Hortonworks,核心产品软件HDP(ambari),HDF免费开源,并且提供一整套的web管理界面,供我们可以通过web界面管理我们的集群状态,web管理界面软件HDF网址(http://ambari.apache.org/),2018年,大数据领域的两大巨头公司Cloudera和Hortonworks宣布平等合并,Cloudera以股票方式收购Hortonworks,Cloudera股东最终获得合并公司60%的股份
在这里插入图片描述







推荐阅读
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • 技术日志:深入探讨Spark Streaming与Spark SQL的融合应用
    技术日志:深入探讨Spark Streaming与Spark SQL的融合应用 ... [详细]
  • Presto:高效即席查询引擎的深度解析与应用
    本文深入解析了Presto这一高效的即席查询引擎,详细探讨了其架构设计及其优缺点。Presto通过内存到内存的数据处理方式,显著提升了查询性能,相比传统的MapReduce查询,不仅减少了数据传输的延迟,还提高了查询的准确性和效率。然而,Presto在大规模数据处理和容错机制方面仍存在一定的局限性。本文还介绍了Presto在实际应用中的多种场景,展示了其在大数据分析领域的强大潜力。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • 【并发编程】全面解析 Java 内存模型,一篇文章带你彻底掌握
    本文深入解析了 Java 内存模型(JMM),从基础概念到高级特性进行全面讲解,帮助读者彻底掌握 JMM 的核心原理和应用技巧。通过详细分析内存可见性、原子性和有序性等问题,结合实际代码示例,使开发者能够更好地理解和优化多线程并发程序。 ... [详细]
  • PHP中元素的计量单位是什么? ... [详细]
  • HBase在金融大数据迁移中的应用与挑战
    随着最后一台设备的下线,标志着超过10PB的HBase数据迁移项目顺利完成。目前,新的集群已在新机房稳定运行超过两个月,监控数据显示,新集群的查询响应时间显著降低,系统稳定性大幅提升。此外,数据消费的波动也变得更加平滑,整体性能得到了显著优化。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 服务器部署中的安全策略实践与优化
    服务器部署中的安全策略实践与优化 ... [详细]
  • 字节跳动深圳研发中心安全业务团队正在火热招募人才! ... [详细]
  • 构建高可用性Spark分布式集群:大数据环境下的最佳实践
    在构建高可用性的Spark分布式集群过程中,确保所有节点之间的无密码登录是至关重要的一步。通过在每个节点上生成SSH密钥对(使用 `ssh-keygen -t rsa` 命令并保持默认设置),可以实现这一目标。此外,还需将生成的公钥分发到所有节点的 `~/.ssh/authorized_keys` 文件中,以确保节点间的无缝通信。为了进一步提升集群的稳定性和性能,建议采用负载均衡和故障恢复机制,并定期进行系统监控和维护。 ... [详细]
  • 开发心得:利用 Redis 构建分布式系统的轻量级协调机制
    开发心得:利用 Redis 构建分布式系统的轻量级协调机制 ... [详细]
  • Hadoop——实验七:MapReduce编程实践
    文章目录一.实验目的二.实验内容三.实验步骤及结果分析 1.基于ubuntukylin14.04(7)版本,安装hadoop-eclipse-kepler-plugi ... [详细]
  • Hadoop的分布式架构改进与应用
    nsitionalENhttp:www.w3.orgTRxhtml1DTDxhtml1-transitional.dtd ... [详细]
author-avatar
鸡__腿孜然小朋友
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有