热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【博学谷学习记录】大数据课程学习第五周总结

Hadoop概述Hadoop介绍Hadoop是Apache旗下的一个用java语言实现开源软件框架,是一个开发和运行处理大规模数据的软件平台。允许使用简单的编程模


Hadoop概述


Hadoop介绍

Hadoop是Apache旗下的一个用java语言实现开源软件框架,是一个开发和运行处理大规模数据的软件平台。允许使用简单的编程模型在大量计算机集群上对大型数据集进行分布式处理。
狭义上说,Hadoop指Apache这款开源框架,它的核心组件有:
HDFS(分布式文件系统):解决海量数据存储
YARN(作业调度和集群资源管理的框架):解决资源任务调度
MAPREDUCE(分布式运算编程框架):解决海量数据计算

广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。
在这里插入图片描述
框架 用途
HDFS 分布式文件系统
MapReduce 分布式运算程序开发框架
ZooKeeper 分布式协调服务基础组件
HIVE 基于HADOOP的分布式数据仓库,提供基于SQL的查询数据操作
FLUME 日志数据采集框架
oozie 工作流调度框架
Sqoop 数据导入导出工具(比如用于mysql和HDFS之间)
Impala 基于hive的实时sql查询分析
Mahout 基于mapreduce/spark/flink等分布式运算框架的机器学习算法库


Hadoop特性优点

扩容能力(Scalable):Hadoop是在可用的计算机集群间分配数据并完成计算任务的,这些集群可用方便的扩展到数以千计的节点中。
成本低(Economical):Hadoop通过普通廉价的机器组成服务器集群来分发以及处理数据,以至于成本很低。
高效率(Efficient):通过并发数据,Hadoop可以在节点之间动态并行的移动数据,使得速度非常快。
可靠性(Rellable):能自动维护数据的多份复制,并且在任务失败后能自动地重新部署(redeploy)计算任务。所以Hadoop的按位存储和处理数据的能力值得人们信赖。


Hadoop历史版本

•1.x版本系列:hadoop版本当中的第二代开源版本,主要修复0.x版本的一些bug等,该版本已被淘汰
•2.x版本系列:架构产生重大变化,引入了yarn平台等许多新特性,是现在使用的主流版本。
3.x版本系列:对HDFS、MapReduce、YARN都有较大升级,还新增了Ozone key-value存储。


Hadoop发行版公司

Hadoop发行版本分为开源社区版和商业版。社区版是指由Apache软件基金会维护的版本,是官方维护的版本体系。
商业版Hadoop是指由第三方商业公司在社区版Hadoop基础上进行了一些修改、整合以及各个服务组件兼容性测试而发行的版本,比较著名的有cloudera的CDH、mapR、hortonWorks等


社区版

一、免费开源版本Apache:
http://hadoop.apache.org/
优点:拥有全世界的开源贡献者,代码更新迭代版本比较快,
缺点:版本的升级,版本的维护,版本的兼容性,版本的补丁都可能考虑不太周到
Apache所有软件的下载地址(包括各种历史版本):http://archive.apache.org/dist/

二、免费开源版本HortonWorks:
hortonworks主要是雅虎主导Hadoop开发的副总裁,带领二十几个核心成员成立Hortonworks,核心产品软件HDP(ambari),HDF免费开源,并且提供一整套的web管理界面,供我们可以通过web界面管理我们的集群状态,web管理界面软件HDF网址(http://ambari.apache.org/),2018年,大数据领域的两大巨头公司Cloudera和Hortonworks宣布平等合并,Cloudera以股票方式收购Hortonworks,Cloudera股东最终获得合并公司60%的股份
在这里插入图片描述







推荐阅读
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 本文介绍了如何使用Flume从Linux文件系统收集日志并存储到HDFS,然后通过MapReduce清洗数据,使用Hive进行数据分析,并最终通过Sqoop将结果导出到MySQL数据库。 ... [详细]
  • 本文介绍如何通过整合SparkSQL与Hive来构建高效的用户画像环境,提高数据处理速度和查询效率。 ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • 大数据领域的职业路径与角色解析
    本文将深入探讨大数据领域的各种职业和工作角色,帮助读者全面了解大数据行业的需求、市场趋势,以及从入门到高级专业人士的职业发展路径。文章还将详细介绍不同公司对大数据人才的需求,并解析各岗位的具体职责、所需技能和经验。 ... [详细]
  • Presto:高效即席查询引擎的深度解析与应用
    本文深入解析了Presto这一高效的即席查询引擎,详细探讨了其架构设计及其优缺点。Presto通过内存到内存的数据处理方式,显著提升了查询性能,相比传统的MapReduce查询,不仅减少了数据传输的延迟,还提高了查询的准确性和效率。然而,Presto在大规模数据处理和容错机制方面仍存在一定的局限性。本文还介绍了Presto在实际应用中的多种场景,展示了其在大数据分析领域的强大潜力。 ... [详细]
  • 本文探讨了使用Python实现监控信息收集的方法,涵盖从基础的日志记录到复杂的系统运维解决方案,旨在帮助开发者和运维人员提升工作效率。 ... [详细]
  • Java虚拟机及其发展历程
    Java虚拟机(JVM)是每个Java开发者日常工作中不可或缺的一部分,但其背后的运作机制却往往显得神秘莫测。本文将探讨Java及其虚拟机的发展历程,帮助读者深入了解这一关键技术。 ... [详细]
  • 在Android应用开发过程中,开发者经常遇到诸如CPU使用率过高、内存泄漏等问题。本文将介绍几种常用的命令及其应用场景,帮助开发者有效定位并解决问题。 ... [详细]
  • 本文详细探讨了在Web开发中常见的UTF-8编码问题及其解决方案,包括HTML页面、PHP脚本、MySQL数据库以及JavaScript和Flash应用中的乱码问题。 ... [详细]
  • Redis:缓存与内存数据库详解
    本文介绍了数据库的基本分类,重点探讨了关系型与非关系型数据库的区别,并详细解析了Redis作为非关系型数据库的特点、工作模式、优点及持久化机制。 ... [详细]
  • 【转】强大的矩阵奇异值分解(SVD)及其应用
    在工程实践中,经常要对大矩阵进行计算,除了使用分布式处理方法以外,就是通过理论方法,对矩阵降维。一下文章,我在 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • PHP中元素的计量单位是什么? ... [详细]
author-avatar
鸡__腿孜然小朋友
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有