热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

表达式必须是指向_每个程序员都必须知道的8种通用数据结构

code小生一个专注大前端领域的技术平台公众号回复Android加入安卓技术群数据结构是一种特殊的组织和存储数据的方式,可以使我们可以更高效地对存储的数据执行操作。数

code小生 一个专注大前端领域的技术平台

公众号回复Android加入安卓技术群数据结构是一种特殊的组织和存储数据的方式,可以使我们可以更高效地对存储的数据执行操作。数据结构在计算机科学和软件工程领域具有广泛而多样的用途。51dbe67fc71375495fb676955df68f2c.png本文转自:网络几乎所有已开发的程序或软件系统都使用数据结构。此外,数据结构属于计算机科学和软件工程的基础。当涉及软件工程面试问题时,这是一个关键主题。因此,作为开发人员,我们必须对数据结构有充分的了解。在本文中,我将简要解释每个程序员必须知道的8种常用数据结构。4db2082a1efadc74b835ddcf74273d29.png1.数组数组是固定大小的结构,可以容纳相同数据类型的项目。它可以是整数数组,浮点数数组,字符串数组或什至是数组数组(例如二维数组)。数组已建立索引,这意味着可以进行随机访问。06f90ef37316abbb796893fa1cd4a900.pngFig 1. Visualization of basic Terminology of Arrays数组运算
  • 遍历:遍历所有元素并进行打印。

  • 插入:将一个或多个元素插入数组。

  • 删除:从数组中删除元素

  • 搜索:在数组中搜索元素。您可以按元素的值或索引搜索元素

  • 更新:在给定索引处更新现有元素的值

数组的应用
  • 用作构建其他数据结构的基础,例如数组列表,堆,哈希表,向量和矩阵。

  • 用于不同的排序算法,例如插入排序,快速排序,冒泡排序和合并排序。

4db2082a1efadc74b835ddcf74273d29.png2.链表链表是一种顺序结构,由相互链接的线性顺序项目序列组成。因此,您必须顺序访问数据,并且无法进行随机访问。链接列表提供了动态集的简单灵活的表示形式。让我们考虑以下有关链表的术语。您可以通过参考图2来获得一个清晰的主意。
  • 链表中的元素称为节点。

  • 每个节点都包含一个密钥和一个指向其后继节点(称为next)的指针。

  • 名为head的属性指向链接列表的第一个元素。

  • 链表的最后一个元素称为尾。

be65e5bccca1f842d16e66b699059977.pngFig 2. Visualization of basic Terminology of Linked Lists以下是可用的各种类型的链表。
  • 单链列表—只能沿正向遍历项目。

  • 双链表-可以在前进和后退方向上遍历项目。节点由一个称为上一个的附加指针组成,指向上一个节点。

  • 循环链接列表—链接列表,其中头的上一个指针指向尾部,尾号的下一个指针指向头。

链表操作
  • 搜索:通过简单的线性搜索在给定的链表中找到键为k的第一个元素,并返回指向该元素的指针

  • 插入:在链接列表中插入一个密钥。插入可以通过3种不同的方式完成; 在列表的开头插入,在列表的末尾插入,然后在列表的中间插入。

  • 删除:从给定的链表中删除元素x。您不能单步删除节点。删除可以通过3种不同方式完成; 从列表的开头删除,从列表的末尾删除,然后从列表的中间删除。

链表的应用
  • 用于编译器设计中的符号表管理。

  • 用于在使用Alt Tab(使用循环链表实现)的程序之间进行切换。

4db2082a1efadc74b835ddcf74273d29.png3.堆栈堆栈是一种LIFO(后进先出-最后放置的元素可以首先访问)结构,该结构通常在许多编程语言中都可以找到。该结构被称为"堆栈",因为它类似于真实世界的堆栈-板的堆栈。5bc83ff215439d06961866c93f503923.png堆栈操作下面给出了可以在堆栈上执行的2个基本操作。请参考图3,以更好地了解堆栈操作。
  • Push 推送:在堆栈顶部插入一个元素。

  • Pop 弹出:删除最上面的元素并返回。

1b8d9f2ae6322236f1aeef27c78efdd7.pngFig 3. Visualization of basic Operations of Stacks此外,为堆栈提供了以下附加功能,以检查其状态。
  • Peep 窥视:返回堆栈的顶部元素而不删除它。

  • isEmpty:检查堆栈是否为空。

  • isFull:检查堆栈是否已满。

堆栈的应用
  • 用于表达式评估(例如:用于解析和评估数学表达式的调车场算法)。

  • 用于在递归编程中实现函数调用。

4db2082a1efadc74b835ddcf74273d29.png4.队列队列是一种FIFO(先进先出-首先放置的元素可以首先访问)结构,该结构通常在许多编程语言中都可以找到。该结构被称为"队列",因为它类似于现实世界中的队列-人们在队列中等待。b705f11a83485e839b495497d223ebe8.png队列操作下面给出了可以在队列上执行的2个基本操作。请参考图4,以更好地了解堆栈操作。
  • 进队:将元素插入队列的末尾。

  • 出队:从队列的开头删除元素。

32ce289a7277572f74046c725a5b489e.pngFig 4. Visualization of Basic Operations of Queues队列的应用
  • 用于管理多线程中的线程。

  • 用于实施排队系统(例如:优先级队列)。

4db2082a1efadc74b835ddcf74273d29.png5.哈希表哈希表是一种数据结构,用于存储具有与每个键相关联的键的值。此外,如果我们知道与值关联的键,则它有效地支持查找。因此,无论数据大小如何,插入和搜索都非常有效。当存储在表中时,直接寻址使用值和键之间的一对一映射。但是,当存在大量键值对时,此方法存在问题。该表将具有很多记录,并且非常庞大,考虑到典型计算机上的可用内存,该表可能不切实际甚至无法存储。为避免此问题,我们使用哈希表。哈希函数名为哈希函数(h)的特殊函数用于克服直接寻址中的上述问题。在直接访问中,带有密钥k的值存储在插槽k中。使用哈希函数,我们可以计算出每个值都指向的表(插槽)的索引。使用给定键的哈希函数计算的值称为哈希值,它表示该值映射到的表的索引。
  • h:哈希函数

  • k:应确定其哈希值的键

  • m:哈希表的大小(可用插槽数)。一个不接近2的精确乘方的素数是m的一个不错的选择。

539e3e92f6f1581352bdbfd547ecd0eb.pngFig 5. Representation of a Hash Function
  • 1→1→1

  • 5→5→5

  • 23→23→3

  • 63→63→3

从上面给出的最后两个示例中,我们可以看到,当哈希函数为多个键生成相同的索引时,就会发生冲突。我们可以通过选择合适的哈希函数h并使用链接和开放式寻址等技术来解决冲突。哈希表的应用
  • 用于实现数据库索引。

  • 用于实现关联数组。

  • 用于实现"设置"数据结构。

4db2082a1efadc74b835ddcf74273d29.png6.树树是一种层次结构,其中数据按层次进行组织并链接在一起。此结构与链接列表不同,而在链接列表中,项目以线性顺序链接。在过去的几十年中,已经开发出各种类型的树木,以适合某些应用并满足某些限制。一些示例是二叉搜索树,B树,红黑树,展开树,AVL树和n元树。二叉搜索树顾名思义,二进制搜索树(BST)是一种二进制树,其中数据以分层结构进行组织。此数据结构按排序顺序存储值,我们将在本课程中详细研究这些值。二叉搜索树中的每个节点都包含以下属性。
  • key:存储在节点中的值。

  • left:指向左孩子的指针。

  • 右:指向正确孩子的指针。

  • p:指向父节点的指针。

二叉搜索树具有独特的属性,可将其与其他树区分开。此属性称为binary-search-tree属性。令x为二叉搜索树中的一个节点。
  • 如果y是x左子树中的一个节点,则y.key≤x.key

  • 如果y是x的右子树中的节点,则y.key≥x.key

311ff337e9294e9ba15b4e138eed1868.pngFig 6. Visualization of Basic Terminology of Trees.树的应用
  • 二叉树:用于实现表达式解析器和表达式求解器。

  • 二进制搜索树:用于许多不断输入和输出数据的搜索应用程序中。

  • 堆:由JVM(Java虚拟机)用来存储Java对象。

  • Trap:用于无线网络。

4db2082a1efadc74b835ddcf74273d29.png7.堆堆是二叉树的一种特殊情况,其中将父节点与其子节点的值进行比较,并对其进行相应排列。让我们看看如何表示堆。堆可以使用树和数组表示。图7和8显示了我们如何使用二叉树和数组来表示二叉堆。87bb5e375fb5e431f4425b9384bcce8d.pngFig 7. Binary Tree Representation of a Heap66890dccd1367c8aa37356454fa31c2f.pngFig 8. Array Representation of a Heap堆可以有2种类型。
  • 最小堆-父项的密钥小于或等于子项的密钥。这称为min-heap属性。根将包含堆的最小值。

  • 最大堆数-父项的密钥大于或等于子项的密钥。这称为max-heap属性。根将包含堆的最大值。

堆的应用
  • 用于实现优先级队列,因为可以根据堆属性对优先级值进行排序。

  • 可以在O(log n)时间内使用堆来实现队列功能。

  • 用于查找给定数组中k个最小(或最大)的值。

  • 用于堆排序算法。

4db2082a1efadc74b835ddcf74273d29.png8.图一个图由一组有限的顶点或节点以及一组连接这些顶点的边组成。图的顺序是图中的顶点数。图的大小是图中的边数。如果两个节点通过同一边彼此连接,则称它们为相邻节点。有向图如果图形G的所有边缘都具有指示什么是起始顶点和什么是终止顶点的方向,则称该图形为有向图。我们说(u,v)从顶点u入射或离开顶点u,然后入射到或进入顶点v。自环:从顶点到自身的边。无向图如果图G的所有边缘均无方向,则称其为无向图。它可以在两个顶点之间以两种方式传播。如果顶点未连接到图中的任何其他节点,则称该顶点为孤立的。7819595cd991699c526c480e26529810.pngFig 9. Visualization of Terminology of Graphs图的应用
  • 用于表示社交媒体网络。每个用户都是一个顶点,并且在用户连接时会创建一条边。

  • 用于表示搜索引擎的网页和链接。互联网上的网页通过超链接相互链接。每页是一个顶点,两页之间的超链接是一条边。用于Google中的页面排名。

  • 用于表示GPS中的位置和路线。位置是顶点,连接位置的路线是边。用于计算两个位置之间的最短路径。

相关推荐

Android 项目中 Loading 对话框的优化

Android MVP && MVVM深度解析

对于 Android 业务开发的一些理解总结

Kotlin + Mvp + RxJava + Retrofit 心得体会

探索 Android 内存优化方法

17c8b7bce3dbab43642728f240a6c5bd.png如果你有写博客的好习惯欢迎投稿

点个在看,小生感恩❤️




推荐阅读
  • 春季职场跃迁指南:如何高效利用金三银四跳槽季
    随着每年的‘金三银四’跳槽高峰期的到来,许多职场人士都开始考虑是否应该寻找新的职业机会。本文将探讨如何制定有效的职业规划、撰写吸引人的简历以及掌握面试技巧,助您在这关键时期成功实现职场跃迁。 ... [详细]
  • 本文详细介绍了 Redis 中的主要数据类型,包括 String、Hash、List、Set、ZSet、Geo 和 HyperLogLog,并提供了每种类型的基本操作命令和应用场景。 ... [详细]
  • 本文介绍了在Linux环境下如何有效返回命令行状态、上一级目录及快速查找头文件和函数定义的方法。包括处理长时间运行命令、编辑器退出技巧、目录导航以及文件搜索策略。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • Redis:缓存与内存数据库详解
    本文介绍了数据库的基本分类,重点探讨了关系型与非关系型数据库的区别,并详细解析了Redis作为非关系型数据库的特点、工作模式、优点及持久化机制。 ... [详细]
  • 关于进程的复习:#管道#数据的共享Managerdictlist#进程池#cpu个数1#retmap(func,iterable)#异步自带close和join#所有 ... [详细]
  • 大华股份2013届校园招聘软件算法类试题D卷
    一、填空题(共17题,每题3分,总共51分)1.设有inta5,*b,**c,执行语句c&b,b&a后,**c的值为________答:5 ... [详细]
  • Spring Boot + RabbitMQ 消息确认机制详解
    本文详细介绍如何在 Spring Boot 项目中使用 RabbitMQ 的消息确认机制,包括消息发送确认和消息接收确认,帮助开发者解决在实际操作中可能遇到的问题。 ... [详细]
  • Redis 是一个高性能的开源键值存储系统,支持多种数据结构。本文将详细介绍 Redis 中的六种底层数据结构及其在对象系统中的应用,包括字符串对象、列表对象、哈希对象、集合对象和有序集合对象。通过12张图解,帮助读者全面理解 Redis 的数据结构和对象系统。 ... [详细]
  • 深入探讨:Actor模型如何解决并发与分布式计算难题
    在现代软件开发中,高并发和分布式系统的设计面临着诸多挑战。本文基于Akka最新文档,详细探讨了Actor模型如何有效地解决这些挑战,并提供了对并发和分布式计算的新视角。 ... [详细]
  • 本文探讨了如何在Windows程序中实现高精度的定时控制,特别是针对需要精确控制发包频率的应用场景,如“小兵以太网测试仪”。 ... [详细]
  • 题目描述:计算从起点到终点的最小能量消耗。如果下一个单元格的风向与当前单元格相同,则消耗为0,否则为1。共有8个可能的方向。 ... [详细]
  • 电商高并发解决方案详解
    本文以京东为例,详细探讨了电商中常见的高并发解决方案,包括多级缓存和Nginx限流技术,旨在帮助读者更好地理解和应用这些技术。 ... [详细]
  • RTThread线程间通信
    线程中通信在裸机编程中,经常会使用全局变量进行功能间的通信,如某些功能可能由于一些操作而改变全局变量的值,另一个功能对此全局变量进行读取& ... [详细]
  • 深入解析Python进程间通信:Queue与Pipe的应用
    本文详细探讨了Python中进程间通信的两种常用方法——Queue和Pipe,并通过具体示例介绍了它们的基本概念、使用方法及注意事项。 ... [详细]
author-avatar
冬日暖光816
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有