热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

比深度学习更值得信赖的模型ART

作者|KATHYPRETZ译者|弯月出品|CSDN(ID:CSDNnews)在过去的20年间,深度学习通过一系列有效的商业应

 

作者 | KATHY PRETZ    译者 | 弯月

出品 | CSDN(ID:CSDNnews)

在过去的 20 年间,深度学习通过一系列有效的商业应用主导了人工智能的研究和应用。但光鲜亮丽的背后却是一些根深蒂固的问题,甚至威胁到了技术的发展。

4c3b43e27e3e110a8f3266ab09970cb3.png

举个例子,常见的深度学习程序只能在某项任务上有良好的表现,技术的应用被限制到了严格控制的环境中的特定任务上。更严重的是,有人认为深度学习并不可信,因为它不可解释,而且也不适合某些应用,因为它会出现灾难性的遗忘问题。也就是说,即便算法真的有效,我们也搞不懂其中的原因。而在深度学习慢慢学习一个新数据库的过程中,可能不知道哪个已经学过的记忆就突然丢失了。因此,在任何关系到人类生命的应用中使用深度学习都是有风险的。例如医疗应用。

最近,IEEE 研究员 Stephen Grossberg 在新书《Conscious Mind, Resonant Brain: How Each Brain Makes a Mind》中提出了一种完全不同的方法。书中描述了 Grossberg 根据几十年来在认知和神经方面的研究,提出的另一种生物和人工智能模型。他称这个模型为“自适应共振理论”(AdaptiveResonance Theory,简称ART)。

Grossberg是美国波士顿大学认知和神经系统、数学和统计学、心理和脑科学以及生物医学工程方面的教授,ART 正是根据他的有关大脑如何处理信息的理论构建的。

他说:“我们的大脑学会了如何在一个充满了意外事件的世界中识别和预测物体和事件。”

基于大脑的这种行为,ART使用监督学习和无监督学习两种方式来解决模式识别和预测等问题。一些大规模的应用包含了以该理论为基础的算法,例如声纳和雷达信号的分类、睡眠呼吸暂停的检测、推荐电影、以及基于计算机视觉的驾驶辅助软件。

Grossberg说,ART 可以放心使用,因为它是可以解释的,而且没有灾难性的遗忘问题。他补充说,ART 解决了“稳定性-可塑性困境”,即大脑或其他学习系统如何能够自主快速学习(可塑性),同时还没有灾难性的遗忘问题(稳定性)。

Grossberg于 1976 年构建了 ART,他是人工智能建模的先驱,美国“波士顿大学自适应系统中心”的创始人和主任,也是“教育、科学和技术学习卓越中心”的创始领导人。这两个中心都在研究大脑的适应与学习方式,并根据他们的发现开发技术应用。

鉴于在“理解大脑的认知和行为,并通过技术模拟这种认知和行为”方面做出的贡献,2017年 Grossberg 荣获IEEE 弗兰克·罗森布拉特(Frank Rosenblatt)奖,该奖以康奈尔大学的这位教授的名字命名,他是公认的“深度学习之父”。

Grossberg在书中解释了“我们称之为大脑的这一小块肉”如何产生思想、感觉、希望、情感和计划。特别是,他描述了旨在解释这个过程的生物神经模型。这本书还涵盖了阿尔茨海默病、自闭症、健忘症和创伤后应激障碍等疾病的根本原因。

他在书中写道:“了解大脑如何产生思想,对于设计计算机科学、工程和技术领域的智能系统(包括人工智能和智能机器人)来说非常重要。本书根据多个工程和技术应用程序总结出了一套生物启发算法,许多公司已经应用了这个算法。”

他说,书中的理论不仅有助于理解大脑,而且还可以应用到能够自主适应不断变化的世界的智能系统的设计。这本书描述了人类聪明、自主和多才多艺的基础。

ART之美

Grossberg写道,大脑的进化是为了适应新的挑战。他说,人类大脑有一套共同的机制,可以控制人类记住已经学到的知识,同时还能接受新信息。

他说:“我们能够牢牢地记住过去的经历,这些事件序列存储在我们的工作记忆中,可以帮助预测我们未来的行为。人类有能力终其一生不断学习,而且新学习到的知识不会冲走之前积累的重要信息。”

他表示,常见的人工智能面临的一个问题是,模型的构建一般都是在模拟大脑“可能”的工作方式,构建使用的概念和操作都是从推测和直觉得出的。

“这种方法假设,你可以根据人们描述日常生活中的物体和行为的概念和词语,来推测大脑的内部状态。这种方法虽然很吸引人,但往往不足以建立模拟生物大脑真正的运作方式的模型。”

他认为,现如今的工智能的问题在于,它在试图模仿大脑处理的结果,而不是探索产生结果的机制。Grossberg 说,由于大脑中有专门的回路,所以人类的行为会“即时”适应新的情况和感觉。他补充说,人类可以根据新情况学习,将意外事件整合到他们收集的知识和对世界的期望中。

他表示,ART 的神经网络源自关于人类和动物如何与环境互动的思想实验。“人类和其他陆生动物已成功适应了多种环境限制,而 ART 的回路正是针对这些环境构建的解决方案。”这表明,ART 的设计可能会以某种形式,体现在未来的自主自适应智能设备中——仿生设备或人工智能设备。

Grossberg总结道:“科技与人工智能的未来将越来越依赖这种自我调节系统,如今的自动驾驶汽车和飞机中已经采用了这种技术。如果资金雄厚的工业研究和应用程序也深入大脑的研究,那么我们能取得多么大的成就!想到这里,我就会激动不已。”

参考链接:

https://spectrum.ieee.org/deep-learning-cant-be-trusted



推荐阅读
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 智慧城市建设现状及未来趋势
    随着新基建政策的推进及‘十四五’规划的实施,我国正步入以5G、人工智能等先进技术引领的智慧经济新时代。规划强调加速数字化转型,促进数字政府建设,新基建政策亦倡导城市基础设施的全面数字化。本文探讨了智慧城市的发展背景、全球及国内进展、市场规模、架构设计,以及百度、阿里、腾讯、华为等领军企业在该领域的布局策略。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • Python 工具推荐 | PyHubWeekly 第二十一期:提升命令行体验的五大工具
    本期 PyHubWeekly 为大家精选了 GitHub 上五个优秀的 Python 工具,涵盖金融数据可视化、终端美化、国际化支持、图像增强和远程 Shell 环境配置。欢迎关注并参与项目。 ... [详细]
  • 智能投顾机器人:创业者如何应对新挑战?
    随着智能投顾技术在二级市场的兴起,针对一级市场的智能投顾也逐渐崭露头角。近日,一款名为阿尔妮塔的人工智能创投机器人正式发布,它将如何改变投资人的工作方式和创业者的融资策略? ... [详细]
  • 本文档旨在帮助开发者回顾游戏开发中的人工智能技术,涵盖移动算法、群聚行为、路径规划、脚本AI、有限状态机、模糊逻辑、规则式AI、概率论与贝叶斯技术、神经网络及遗传算法等内容。 ... [详细]
  • 本文探讨了亚马逊Go如何通过技术创新推动零售业的发展,以及面临的市场和隐私挑战。同时,介绍了亚马逊最新的‘刷手支付’技术及其潜在影响。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 本文旨在探讨如何利用决策树算法实现对男女性别的分类。通过引入信息熵和信息增益的概念,结合具体的数据集,详细介绍了决策树的构建过程,并展示了其在实际应用中的效果。 ... [详细]
  • 江苏启动鲲鹏生态产业园首批应用孵化项目
    2019年9月19日,在华为全联接大会上,江苏鲲鹏生态产业园正式启动了首批鲲鹏应用孵化项目。南京市委常委、江北新区党工委专职副书记罗群等多位嘉宾出席并见证了这一重要时刻。 ... [详细]
author-avatar
手机用户2502897625
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有