热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Bellman-ford算法、SPFA算法求解最短路模板

Bellman-ford算法适用于含有负权边的最短路求解,复杂度是O(VE),其原理是依次对每条边进行松弛操作,重复这个操作E-1次后则一定得到最短路,如果还能继续松弛,则有负环。这是因为最长的

Bellman-ford 算法适用于含有负权边的最短路求解,复杂度是O( VE ),其原理是依次对每条边进行松弛操作,重复这个操作E-1次后则一定得到最短路,如果还能继续松弛,则有负环。这是因为最长的没有环路的路,也只不过是V个点E-1条边构成的,所以松弛E-1次一定能得到最短路。因此这个算法相比 Dijkstra 首先其是对边进行增广,其次它能检测出负环的存在(若负环存在,那么最短路是取不到的,因为可以一直绕着这个负环将最小路径值不断缩小),这个弥补了 Dijkstra 的不足,但是其算法跑的比较慢,因此为了追求速度往往采用其“队列优化版”==>SPFA,因此想要理解SPFA最好先看看Bellman-ford算法。

 

SPFA 算法适用于含有负权边的最短路求解,其复杂度并没有网上传的那么神乎在理想情况下有论文指出其复杂度为O(kE)且k是一个约小于2的常数,但是在一些稠密图下其算法性能还是会退化到和 Bellman-ford 一样的 O( VE ),所以在稠密图下建议使用 Dij + Heap 优化的版本,稀疏图下 SPFA 还是很给力的!在 Bellman-ford 中发现啊最外层的 N-1 次循环未免盲目、实际上被松弛过的点我们希望其去继续松弛其他点,这样我们用队列将被松弛过的点存起来以便下一次继续松弛其他点,具体原理和做法可以参考下面的链接,顺便一提,SPFA还有两个优化==> SLF 与 LLL,具体也不阐述了。本文主要给出模板!

 

算法原理 or 学习参考链接 : 点我 、点我啦 、 点嘛! 

 

Bellman-ford模板

///POJ 2387为例
#include
using namespace std;
const int maxn = 1e3 + 10;
const int INF  = 0x3f3f3f3f;
struct EdgeNode{ int from, to, w; };
EdgeNode Edge[maxn*maxn];
int Dis[maxn];
int N, M, cnt;

inline void init()
{
    for(int i=0; i<=N; i++)
        Dis[i] = INF;
    cnt = 0;
}

bool BellmanFord(int st)
{
    Dis[st] = 0;
    for(int i=0; i///N-1 次循环后肯定能找出最短路
        bool Changed = false;
        int to, from, weight;

        for(int j=0; j){
            to     = Edge[j].to,
            from   = Edge[j].from,
            weight = Edge[j].w;

            if(Dis[from]!=INF && Dis[to] > Dis[from] + weight){
                Changed = true;
                Dis[to] = Dis[from] + weight;
                ///pre[to] = j; //Record paths
            }
        }

        if(!Changed) return true;///如果没有边可以继续松弛了,说明算法结束且无负环
        if(i==N && Changed) return false;///有负环
    }
    return false; ///一般来说绝无可能执行到这一步
}

int main(void)
{
    while(~scanf("%d %d", &M, &N)){
        init();
        int from, to, weight;
        for(int i=0; i){
            scanf("%d %d %d", &from, &to, &weight);
            Edge[cnt].from = from;
            Edge[cnt].to   = to;
            Edge[cnt].w    = weight;
            cnt++;
            Edge[cnt].to   = from;
            Edge[cnt].from = to;
            Edge[cnt].w    = weight;
            cnt++;
        }
        BellmanFord(1);
        printf("%d\n", Dis[N]);
    }
    return 0;
}
View Code

 

SPFA模板( SLF 优化版 )

///POJ 2387为例
#include 
#include 
#include 
#include 
#include <string.h>
using namespace std;

const int INF=0x3f3f3f3f;
const int maxn = 1e3 + 10;

struct EdgeNode{ int v, w, nxt; };
EdgeNode Edge[maxn*maxn];
bool vis[maxn];
int Head[maxn], Dis[maxn], cnt;
int N, M;
/// int PushCnt[maxn]; ///记录每一个节点的入队次数、方便判断负环

inline void init()
{
    for(int i=0; i<=N; i++)
        ///PushCnt[i] = 0;
        Head[i] = -1,
        Dis[i]  = INF,
        vis[i]  = false;
    cnt = 0;
}

inline void AddEdge(int from, int to, int weight)
{
    Edge[cnt].w = weight;
    Edge[cnt].v = to;
    Edge[cnt].nxt = Head[from];
    Head[from] = cnt++;
}

void SPFA(int st)///若要判断负环、改为 bool
{
    deque<int> que;
    que.push_back(st);
    vis[st]=true;
    Dis[st]=0;
    while (!que.empty())
    {
        int T=que.front(); que.pop_front();
        vis[T]=false;
        for (int i=Head[T]; i!=-1; i=Edge[i].nxt)
        {
            int v=Edge[i].v;
            int w=Edge[i].w;
            if (Dis[v]>Dis[T]+w){
                Dis[v]=Dis[T]+w;
                ///p[v] = T;
                if (!vis[v]){
                    ///if(++PushCnt[v] > N) return false; //有负环
                    vis[v]=true;
                    if(!que.empty() && Dis[v] < Dis[que.front()]) que.push_front(v);
                    else que.push_back(v);
                    //que.push_back(v); ///无SLF优化是这样写的
                }
            }
        }
    }
    /// return true;
}


int main(void)
{
    while(~scanf("%d %d", &M, &N)){
        init();
        int from, to, weight;
        for(int i=0; i){
            scanf("%d %d %d", &from, &to, &weight);
            AddEdge(from, to, weight);
            AddEdge(to, from, weight);
        }
        SPFA(1);
        printf("%d\n", Dis[N]);
    }
    return 0;
}
View Code

 


推荐阅读
  • 深入解析Android 4.4中的Fence机制及其应用
    在Android 4.4中,Fence机制是处理缓冲区交换和同步问题的关键技术。该机制广泛应用于生产者-消费者模式中,确保了不同组件之间高效、安全的数据传输。通过深入解析Fence机制的工作原理和应用场景,本文探讨了其在系统性能优化和资源管理中的重要作用。 ... [详细]
  • 经过两天的努力,终于成功解决了半平面交模板题POJ3335的问题。原来是在`OnLeft`函数中漏掉了关键的等于号。通过这次训练,不仅加深了对半平面交算法的理解,还提升了调试和代码实现的能力。未来将继续深入研究计算几何的其他核心问题,进一步巩固和拓展相关知识。 ... [详细]
  • 本文深入探讨了佩尔方程 \( x^2 - dy^2 = 1 \) 的递推关系式。通过构造特定的矩阵并利用矩阵快速幂的方法,可以高效地计算出该方程的第 k 组解。此外,文章还详细分析了递推关系式的数学背景及其在数论中的应用,为相关研究提供了坚实的理论基础。 ... [详细]
  • 在洛谷 P1344 的坏牛奶追踪问题中,第一问要求计算最小割,而第二问则需要找到割边数量最少的最小割。通过为每条边附加一个单位权值,可以在求解最小割时优先选择边数较少的方案,从而同时解决两个问题。这种策略不仅简化了问题的求解过程,还确保了结果的最优性。 ... [详细]
  • 2012年9月12日优酷土豆校园招聘笔试题目解析与备考指南
    2012年9月12日,优酷土豆校园招聘笔试题目解析与备考指南。在选择题部分,有一道题目涉及中国人的血型分布情况,具体为A型30%、B型20%、O型40%、AB型10%。若需确保在随机选取的样本中,至少有一人为B型血的概率不低于90%,则需要选取的最少人数是多少?该问题不仅考察了概率统计的基本知识,还要求考生具备一定的逻辑推理能力。 ... [详细]
  • 寒假作业解析:第三周 2月12日 第7题
    尽快完成之前的练习任务!每日一练2.1 Problem A Laurenty and Shop 的题目要求是选择两条不同的路线以最小化总的等待时间。简要分析:通过对比不同路线的等待时间,可以找到最优解。此问题可以通过动态规划或贪心算法来解决,具体取决于路线的复杂性和约束条件。 ... [详细]
  • 蓝桥杯算法实战:节点选取策略优化分析
    本文针对蓝桥杯算法竞赛中的节点选取策略进行了深入分析与优化。通过对比不同节点选择方法的效果,提出了基于贪心算法和动态规划的综合优化方案,旨在提高算法效率和准确性。实验结果表明,该优化策略在处理大规模数据集时表现出色,显著提升了算法性能。 ... [详细]
  • 基址获取与驱动开发:内核中提取ntoskrnl模块的基地址方法解析
    基址获取与驱动开发:内核中提取ntoskrnl模块的基地址方法解析 ... [详细]
  • 题目链接:POJ 2777。问题描述:给定一个区域,需要进行多次涂色操作,并在每次操作后查询某个区间内的不同颜色数量。解决方案:由于题目中颜色种类不超过30种,可以利用线段树的懒惰更新策略来高效处理这些操作。通过懒惰标记,避免了不必要的节点更新,从而显著提高了算法的效率。此外,该方法还能有效应对大规模数据输入,确保在合理的时间内完成所有操作。 ... [详细]
  • 题目解析给定 n 个人和 n 种书籍,每个人都有一个包含自己喜好的书籍列表。目标是计算出满足以下条件的分配方案数量:1. 每个人都必须获得他们喜欢的书籍;2. 每本书只能分配给一个人。通过使用深度优先搜索算法,可以系统地探索所有可能的分配组合,确保每个分配方案都符合上述条件。该方法能够有效地处理这类组合优化问题,找到所有可行的解。 ... [详细]
  • 当使用 `new` 表达式(即通过 `new` 动态创建对象)时,会发生两件事:首先,内存被分配用于存储新对象;其次,该对象的构造函数被调用以初始化对象。为了确保资源管理的一致性和避免内存泄漏,建议在使用 `new` 和 `delete` 时保持形式一致。例如,如果使用 `new[]` 分配数组,则应使用 `delete[]` 来释放内存;同样,如果使用 `new` 分配单个对象,则应使用 `delete` 来释放内存。这种一致性有助于防止常见的编程错误,提高代码的健壮性和可维护性。 ... [详细]
  • 洛谷 P4035 [JSOI2008] 球形空间生成器(高斯消元法 / 模拟退火算法)
    本文介绍了洛谷 P4035 [JSOI2008] 球形空间生成器问题的解决方案,主要使用了高斯消元法和模拟退火算法。通过这两种方法,可以高效地求解多维空间中的球心位置。文章提供了详细的算法模板和实现代码,适用于 ACM 竞赛和其他相关应用场景。数据范围限制在 10 以内,确保了算法的高效性和准确性。 ... [详细]
  • 单链表的高效遍历及性能优化策略
    本文探讨了单链表的高效遍历方法及其性能优化策略。在单链表的数据结构中,插入操作的时间复杂度为O(n),而遍历操作的时间复杂度为O(n^2)。通过在 `LinkList.h` 和 `main.cpp` 文件中对单链表进行封装,我们实现了创建和销毁功能的优化,提高了单链表的使用效率。此外,文章还介绍了几种常见的优化技术,如缓存节点指针和批量处理,以进一步提升遍历性能。 ... [详细]
  • 在解决区间相关问题时,我发现自己经常缺乏有效的思维方式,即使是简单的题目也常常需要很长时间才能找到解题思路,而一旦得到提示便能迅速理解。题目要求对一个包含n个元素的数组进行操作,并给出一个参数k,具体任务是…… ... [详细]
  • 开发心得:成为SGU475智能筏工的策略与技巧 ... [详细]
author-avatar
漫猪傻滑_679
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有