热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

贝叶斯信息融合MATLAB,基于神经网络与贝叶斯信息融合的小白菜成熟度检测方法...

基于神经网络与贝叶斯信息融合的小白菜成熟度检测方法梁帆孙更强王宇等【论文摘要】为了掌握智能植物生长柜中小白菜的成熟情况,便于对柜内环境参数实现智能控制,

0129956ac15059362d20990b9a30c98b.png

基于神经网络与贝叶斯信息融合的小白菜成熟度检测方法

梁帆孙更强王宇等

【论文摘要】为了掌握智能植物生长柜中小白菜的成熟情况,便于对柜内环境参数实现智能控制,提出了利用小白菜的外部形态特征,特别是提取根系形态特征并将其与地上部分形态特征相结合来检测小白菜成熟度的方法。通过Matlab图像处理工具箱对采集的小白菜图像进行阈值分割和特征提取,然后将小白菜上、下两部分的形态特征数据作为训练样本,分别建立对应的神经网络成熟度检测模型,并将神经网络检测值利用贝叶斯理论来对其进行信息融合,从而进一步提高神经网络模型检测的准确性。

【论文关键词】图像处理;神经网络;成熟度;贝叶斯理论;信息融合

植物根系和地上部分有着极大的相关性[1],根和叶伴随着植物的生长而生长,都可以作为其成熟度的表征。对于智能植物生长柜[2]来说,作物的根系生长在营养液透明水槽中,在晾根的环节可以完全暴露在空气中,这为根系形态特征提取创造了条件。准确掌握蔬菜的成熟度对于提高作物产量具有十分重要的意义,尤其是智能植物生长柜生长环境下,成熟度不仅关系到蔬菜的营养品质,而且与节能减耗也紧密相关,因此科学地掌握蔬菜的成熟度显得尤为重要。

在作物成熟度检测方面,张长利等[3]通过采集番茄图像,提取H值作为番茄表面颜色特征,采用遗传算法训练的多层前馈神经网络实现番茄成熟度的自动判别,准确率达到94%。由于颜色特征很容易受到光照等因素的影响,为此,本文提出了利用小白菜的形态特征,特别是地上部分的茎叶特征与地下部分的根系特征相结合的方法,利用神经网络模型对上下两部分形态特征建模训练,然后再根据贝叶斯理论对上下两部分神经网络的检测值进行信息融合,从而进一步提高小白菜成熟度检测的准确性。

1材料与方法

本文使用神经网络建模的方法建立小白菜形态与成熟度之间的关系模型。神经网络的输入采用小白菜图像处理得到的特征数据,输出则选择利用积温比值得到标准成熟度等级。最后对其结果进行贝叶斯信息融合,从而准确检测出小白菜成熟度等级。其整体流程图如图1所示。

1.1试验设置



推荐阅读
  • 本文探讨了卷积神经网络(CNN)中感受野的概念及其与锚框(anchor box)的关系。感受野定义了特征图上每个像素点对应的输入图像区域大小,而锚框则是在每个像素中心生成的多个不同尺寸和宽高比的边界框。两者在目标检测任务中起到关键作用。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 信用评分卡的Python实现与评估
    本文介绍如何使用Python构建和评估信用评分卡模型,涵盖数据预处理、模型训练及验证指标选择。附带详细代码示例和视频教程链接。 ... [详细]
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • 智能车间调度研究进展
    本文综述了基于强化学习的智能车间调度策略,探讨了车间调度问题在资源有限条件下的优化方法。通过数学规划、智能算法和强化学习等手段,解决了作业车间、流水车间和加工车间中的静态与动态调度挑战。重点讨论了不同场景下的求解方法及其应用前景。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 本文档旨在帮助开发者回顾游戏开发中的人工智能技术,涵盖移动算法、群聚行为、路径规划、脚本AI、有限状态机、模糊逻辑、规则式AI、概率论与贝叶斯技术、神经网络及遗传算法等内容。 ... [详细]
  • 基于2-channelnetwork的图片相似度判别一、相关理论本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:《LearningtoCompar ... [详细]
  • 在上一篇文章中,我们初步探讨了神经网络的基础概念,并通过一个简单的例子——将摄氏度转换为华氏度——介绍了单个神经元的工作原理。本文将继续探索神经网络的应用,特别是如何构建一个基本的分类器。 ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 本文介绍如何利用动态规划算法解决经典的0-1背包问题。通过具体实例和代码实现,详细解释了在给定容量的背包中选择若干物品以最大化总价值的过程。 ... [详细]
  • TWEN-ASR 语音识别入门:运行首个程序
    本文详细介绍了如何使用TWEN-ASR ONE开发板运行第一个语音识别程序,包括开发环境搭建、代码编写、下载和调试等步骤。 ... [详细]
author-avatar
姑另静乖_606
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有