热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

百度PaddlePaddle2.什么是深度学习?

本文基于百度PaddlePaddle教程:
https://aistudio.baidu.com/aistudio/projectdetail/349025

一、深度学习的发展历程

1. 首先说说医学上的发现

1981年的诺贝尔将颁发给了David Hubel和Torsten Wiesel,以及Roger Sperry。他们发现了人的视觉系统处理信息是分级的

从视网膜(Retina)出发,经过低级的V1区提取边缘特征,到V2区的基本形状或目标的局部,再到高层的整个目标(如判定为一张人脸),以及到更高层的PFC(前额叶皮层)进行分类判断等。也就是说高层的特征是低层特征的组合,从低层到高层的特征表达越来越抽象和概念化,也即越来越能表现语义或者意图

边缘特征 —–> 基本形状和目标的局部特征——>整个目标 这个过程其实和我们的常识是相吻合的,因为复杂的图形,往往就是由一些基本结构组合而成的。同时我们还可以看出:大脑是一个深度架构,认知过程也是深度的。

百度PaddlePaddle >>> 2. 什么是深度学习?
百度PaddlePaddle >>> 2. 什么是深度学习?

2. 深度学习的出现

低层次特征 - - - - (组合) - - ->抽象的高层特征

深度学习,就是通过组合低层特征形成更加抽象的高层特征(或属性类别)。
例如,在计算机视觉领域,深度学习算法从原始图像去学习得到一个低层次表达,例如边缘检测器、小波滤波器等,然后在这些低层次表达的基础上,通过线性或者非线性组合,来获得一个高层次的表达。此外,不仅图像存在这个规律,声音也是类似的。比如,研究人员从某个声音库中通过算法自动发现了20种基本的声音结构,其余的声音都可以由这20种基本结构来合成!

二、机器学习

机器学习是实现人工智能的一种手段,也是目前被认为比较有效的实现人工智能的手段。
简单来说,机器学习就是通过算法,使得机器能从大量历史数据中学习规律,从而对新的样本做智能识别或对未来做预测。

2. 人工智能和机器学习

人工智能是计算机科学的一个分支,研究计算机中智能行为的仿真。

每当一台机器根据一组预先定义的解决问题的规则来完成任务时,这种行为就被称为人工智能。

基本上,机器学习是人工智能的一个子集;更为具体地说,它只是一种实现AI的技术,一种训练算法的模型,这种算法使得计算机能够学习如何做出决策。

从某种意义上来说,机器学习程序根据计算机所接触的数据来进行自我调整。

3. 监督式学习和非监督式学习

监督式学习需要使用有输入和预期输出标记的数据集。

当你使用监督式学习训练人工智能时,你需要提供一个输入并告诉它预期的输出结果。

如果人工智能产生的输出结果是错误的,它将重新调整自己的计算。这个过程将在数据集上不断迭代地完成,直到AI不再出错。

非监督式学习是利用既不分类也不标记的信息进行机器学习,并允许算法在没有指导的情况下对这些信息进行操作。

三、深度学习如何工作

我们将通过建立一个公交票价估算在线服务来了解深度学习是如何工作的。

我们希望我们的巴士票价估价师使用以下信息/输入来预测价格:
百度PaddlePaddle >>> 2. 什么是深度学习?

1. 神经网络

神经网络是一组粗略模仿人类大脑,用于模式识别的算法。神经网络这个术语来源于这些系统架构设计背后的灵感,这些系统是用于模拟生物大脑自身神经网络的基本结构,以便计算机能够执行特定的任务。

和人类一样, “AI价格评估”也是由神经元(圆圈)组成的。此外,这些神经元还是相互连接的。
百度PaddlePaddle >>> 2. 什么是深度学习?
神经元分为三种不同类型的层次:

  1. 输入层接收输入数据。在我们的例子中,输入层有四个神经元:出发站、目的地站、出发日期和巴士公司。输入层会将输入数据传递给第一个隐藏层;
  2. 隐藏层对输入数据进行数学计算。创建神经网络的挑战之一是决定隐藏层的数量,以及每一层中的神经元的数量;
  3. 人工神经网络的输出层是神经元的最后一层,主要作用是为此程序产生给定的输出,在本例中输出结果是预测的价格值。

百度PaddlePaddle >>> 2. 什么是深度学习?
神经元之间的每个连接都有一个权重。这个权重表示输入值的重要性。模型所做的就是学习每个元素对价格的贡献有多少。这些“贡献”是模型中的权重。一个特征的权重越高,说明该特征比其他特征更为重要。

在预测公交票价时,出发日期是影响最终票价的最为重要的因素之一。因此,出发日期的神经元连接具有较大的“权重”。
百度PaddlePaddle >>> 2. 什么是深度学习?
每个神经元都有一个**函数。它主要是一个根据输入传递输出的函数。 当一组输入数据通过神经网络中的所有层时,最终通过输出层返回输出数据。

2. 通过训练改进神经网络

为了提高“AI价格评估”的精度,我们需要将其预测结果与过去的结果进行比较,为此,我们需要两个要素:

  1. 大量的计算能力;
  2. 大量的数据。

训练AI的过程中,重要的是给它的输入数据集(一个数据集是一个单独地或组合地或作为一个整体被访问的数据集合),此外还需要对其输出结果与数据集中的输出结果进行对比。

一旦我们遍历了整个数据集,就有可能创建一个函数来衡量AI输出与实际输出(历史数据)之间的差异。这个函数叫做成本函数。即成本函数是一个衡量模型准确率的指标,衡量依据为此模型估计X与Y间关系的能力。

模型训练的目标是使成本函数等于零,即当AI的输出结果与数据集的输出结果一致时(成本函数等于0)。

3. 如何降低成本函数?

通过使用一种叫做梯度下降的方法。梯度衡量得是,如果你稍微改变一下输入值,函数的输出值会发生多大的变化(导数)

梯度下降法是一种求函数最小值的方法。在这种情况下,目标是取得成本函数的最小值。 它通过每次数据集迭代之后优化模型的权重来训练模型。通过计算某一权重集下代价函数的梯度,可以看出最小值的梯度方向。
百度PaddlePaddle >>> 2. 什么是深度学习?
为了降低成本函数值,多次遍历数据集非常重要。

例子 — 手写数字识别
推荐阅读
  • 当前,众多初创企业对全栈工程师的需求日益增长,但市场中却存在大量所谓的“伪全栈工程师”,尤其是那些仅掌握了Node.js技能的前端开发人员。本文旨在深入探讨全栈工程师在现代技术生态中的真实角色与价值,澄清对这一角色的误解,并强调真正的全栈工程师应具备全面的技术栈和综合解决问题的能力。 ... [详细]
  • 表面缺陷检测数据集综述及GitHub开源项目推荐
    本文综述了表面缺陷检测领域的数据集,并推荐了多个GitHub上的开源项目。通过对现有文献和数据集的系统整理,为研究人员提供了全面的资源参考,有助于推动该领域的发展和技术进步。 ... [详细]
  • 随着人工智能(AI)技术在日常作业与生活中的应用不断扩展,企业对AI系统的依赖也日益加深。为了确保这些系统能够高效、稳定地运行,有效的部署与管理策略变得至关重要。这不仅涉及技术层面的优化,如算法选择和数据处理,还包括组织架构的调整和人才培训等方面,以全面支持AI系统的成功实施与持续运营。 ... [详细]
  • AI TIME联合2021世界人工智能大会,共探图神经网络与认知智能前沿话题
    AI TIME携手2021世界人工智能大会,共同探讨图神经网络与认知智能的最新进展。自2018年在上海首次举办以来,WAIC已成为全球AI领域的年度盛会,吸引了众多专家学者和行业领袖参与。本次大会将聚焦图神经网络在复杂系统建模、知识图谱构建及认知智能应用等方面的技术突破和未来趋势。 ... [详细]
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 在第七天的深度学习课程中,我们将重点探讨DGL框架的高级应用,特别是在官方文档指导下进行数据集的下载与预处理。通过详细的步骤说明和实用技巧,帮助读者高效地构建和优化图神经网络的数据管道。此外,我们还将介绍如何利用DGL提供的模块化工具,实现数据的快速加载和预处理,以提升模型训练的效率和准确性。 ... [详细]
  • 如何提升Python处理约1GB数据集时的运行效率?
    如何提升Python处理约1GB数据集时的运行效率?本文探讨了在后端开发中使用Python处理大规模数据集的优化方法。通过分析常见的性能瓶颈,介绍了多种提高数据处理速度的技术,包括使用高效的数据结构、并行计算、内存管理和代码优化策略。此外,文章还提供了在Ubuntu环境下配置和测试这些优化方案的具体步骤,适用于从事推荐系统等领域的开发者。 ... [详细]
  • 本文深入探讨了算法进阶中的多个核心主题,包括最大似然估计在统计建模中的应用、赔率计算在风险评估中的重要性、FuzzyWuzzy库在字符串相似度匹配中的高效使用、主成分分析(PCA)在数据降维与特征提取中的关键作用,以及One-Hot编码在处理分类变量时的技术细节。通过这些内容,读者将获得对算法应用的全面理解。 ... [详细]
  • 深入解析 C 语言与 C++ 之间的差异及关联
    深入解析 C 语言与 C++ 之间的差异及关联 ... [详细]
  • 全新发布的自我修复与自我更新的Linux版本,专为云计算环境设计! ... [详细]
  • 中国安全防护服务运营分析:视频监控维护服务的未来走向与发展潜力
    本文探讨了视频监控运维服务在中国的发展趋势与潜力。近年来,随着对安全防护需求的不断增加,视频监控系统作为高效、直观且准确的防范工具,逐渐受到政府和企业的高度重视。该系统能够实时呈现设防区域的现场情况,为安全管理和应急响应提供了重要支持。未来,随着技术的不断进步和应用场景的拓展,视频监控运维服务有望迎来更加广阔的发展空间。 ... [详细]
  • 利用 PyTorch 实现 Python 中的高效矩阵运算 ... [详细]
  • 亚马逊老板杰夫·贝佐斯
    本文主要介绍关于的知识点,对【亚马逊创始人或成地球首位万亿富豪,起底贝佐斯创业之路】和【亚马逊老板杰夫·贝佐斯】有兴趣的朋友可以看下由【CSDN资讯】投稿的技术文章,希望该技术和经验能帮到你解决你所遇 ... [详细]
  • 谷歌工程师:TensorFlow已重获新生;网友:我还是用PyTorch
    乾明发自凹非寺量子位报道|公众号QbitAI道友留步!TensorFlow已重获新生。在“PyTorch真香”的潮流中,有人站出来为TensorFlow说话了。这次来自谷歌的工程师 ... [详细]
  • 马志强探讨语音识别技术的最新进展与实际应用案例——RTC开发者聚会分享
    本文主要分享【人工智能语音识别技术的研究前沿】,技术文章【马志强:语音识别技术研究进展和应用落地分享丨RTCDevMeetup】为【声网】投稿,如果你遇到RTCDevMeetup相关问题,本文 ... [详细]
author-avatar
wInnIe小店
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有