热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

百度飞桨部署月,带你畅享TensorRT高性能推理

点击左上方蓝字关注我们部署是人工智能落地的最后一公里,但是这“一公里”往往并不好走。如何让模型落地复杂的软硬件环境,并充分实现最优的推理效果࿰

点击左上方蓝字关注我们

部署是人工智能落地的最后一公里,但是这“一公里”往往并不好走。如何让模型落地复杂的软硬件环境,并充分实现最优的推理效果,一直是人工智能从业者们追求和努力的方向。飞桨听见所有开发者的心声,在未来的一个月中,分別准备了十节不同场景的手把手部署实操课程,其中又分为四月服务器侧部署系列5节课程,及五月端侧部署系列的5节推理实践。今天就来为大家介绍一下4月19、20日的这两节课程,想提前了解课程内容可以观看下方视频哦!    

一般来说深度学习部署往往不外乎两个方面: 如何选择合适的推理预测库相应的硬件

在预测库部分,飞桨深度学习平台除了为人工智能的应用提供了扎实的框架基座,也在预测库上根据不同场景提供了多端多平台的选择:包含了适合传统数据中心及服务器的高性能预测库Paddle Inference,其抽取了主框架的前向算子,再整合TensorRT等加速库达到最极致的性能; 基于Paddle Inference封装了gRPC, bRPC, RestfulAPI的服务化部署框架Paddle Serving,让你轻松一键完成模型即服务; 根据手机及端侧的有限内存及功耗最佳化的轻量化预测库Paddle Lite;专门设计给APP开发者的开箱即用工具LiteKit和国内唯一的前端Javascript预测库Paddle.js等。

而在硬件方面,英伟达可以说是人工智能时代的领跑者,旗下丰富的通用GPU硬件,从服务器端的Tesla系列、端侧的Jeston系列、到人手一张的消费型显卡Geforce系列,相信所有开发者都或多或少使用过。而要想充分释放你手边英伟达GPU硬件最大能力,除了使用通用的CUDA, 使用TensorRT加速库也是绝对必备的!

扫描下方二维码立即报名

那么飞桨与基于英伟达GPU+TensorRT具体怎么使用,才能够充分实现更卓越的部署体验呢?飞桨将会在部署月活动课程中,详细解读如何在上述各种不同GPU硬件场景下如何利用飞桨框架更便利的启用TensorRT。举例来说,在对模型推理延时和吞吐量要求极高的数据中心及服务器部署时,飞桨将通过Paddle Inference与TensorRT的结合,实现高性能的推理。而進一步还可以搭配飞桨的模型压缩工具PaddleSlim对模型进行剪枝、量化等操作,或者使用C++的推理库取代大家比较熟悉的Python推理库,都能有效提升性能。

直播课精彩内容抢先看

最后,入门深度学习用戶或者传统制造业中常常使用的Windows系统台式机,而且Windows系统下许多开发者选用的C#编程环境,这类场景中如何结合TensorRT做推理呢?又如何解决编译环境通常比较复杂的问题?相关的教程资源网络上还比较少,但是飞桨部署月的课程都会为大家详细讲解。更多精彩的內容,欢迎大家踊跃报名,我们4月19-20日两天直播间见!

飞桨(PaddlePaddle)以百度多年的深度学习技术研究和业务应用为基础,是中国首个开源开放、技术领先、功能完备的产业级深度学习平台,包括飞桨开源平台和飞桨企业版。飞桨开源平台包含核心框架、基础模型库、端到端开发套件与工具组件,持续开源核心能力,为产业、学术、科研创新提供基础底座。飞桨企业版基于飞桨开源平台,针对企业级需求增强了相应特性,包含零门槛AI开发平台EasyDL和全功能AI开发平台BML。EasyDL主要面向中小企业,提供零门槛、预置丰富网络和模型、便捷高效的开发平台;BML是为大型企业提供的功能全面、可灵活定制和被深度集成的开发平台。

END


推荐阅读
  • 在Windows系统中安装TensorFlow GPU版的详细指南与常见问题解决
    在Windows系统中安装TensorFlow GPU版是许多深度学习初学者面临的挑战。本文详细介绍了安装过程中的每一个步骤,并针对常见的问题提供了有效的解决方案。通过本文的指导,读者可以顺利地完成安装并避免常见的陷阱。 ... [详细]
  • C#实现文件的压缩与解压
    2019独角兽企业重金招聘Python工程师标准一、准备工作1、下载ICSharpCode.SharpZipLib.dll文件2、项目中引用这个dll二、文件压缩与解压共用类 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 本文探讨了在一个物理隔离的环境中构建数据交换平台所面临的挑战,包括但不限于数据加密、传输监控及确保文件交换的安全性和可靠性。同时,作者结合自身项目经验,分享了项目规划、实施过程中的关键决策及其背后的思考。 ... [详细]
  • 本文将详细探讨PHP中C的作用,并对比其他编程语言如Java和C的特点及其适用场景。 ... [详细]
  • 本文通过基准测试(Benchmark)对.NET Core环境下Thrift和HTTP客户端的微服务通信性能进行对比分析。基准测试是一种评估系统或组件性能的方法,通过运行一系列标准化的测试来衡量其表现。 ... [详细]
  • 分享两个GitHub链接,今天看到的,超赞超赞不能更赞了,答应我一定要去看好吗~~~~不论是笔记还是github中分享的其它资源ÿ ... [详细]
  • 本文介绍了如何使用 Google Colab 的免费 GPU 资源进行深度学习应用开发。Google Colab 是一个无需配置即可使用的云端 Jupyter 笔记本环境,支持多种深度学习框架,并且提供免费的 GPU 计算资源。 ... [详细]
  • 在Conda环境中高效配置并安装PyTorch和TensorFlow GPU版的方法如下:首先,创建一个新的Conda环境以避免与基础环境发生冲突,例如使用 `conda create -n pytorch_gpu python=3.7` 命令。接着,激活该环境,确保所有依赖项都正确安装。此外,建议在安装过程中指定CUDA版本,以确保与GPU兼容性。通过这些步骤,可以确保PyTorch和TensorFlow GPU版的顺利安装和运行。 ... [详细]
  • 本文全面解析了 gRPC 的基础知识与高级应用,从 helloworld.proto 文件入手,详细阐述了如何定义服务接口。例如,`Greeter` 服务中的 `SayHello` 方法,该方法在客户端和服务器端的消息交互中起到了关键作用。通过实例代码,读者可以深入了解 gRPC 的工作原理及其在实际项目中的应用。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 深入解析监督学习的核心概念与应用
    本文深入探讨了监督学习的基本原理及其广泛应用。监督学习作为机器学习的重要分支,通过利用带有标签的训练数据,能够有效构建预测模型。文章详细解析了监督学习的关键概念,如特征选择、模型评估和过拟合问题,并介绍了其在图像识别、自然语言处理等领域的实际应用。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
author-avatar
我是风一样的我们
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有