热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【BZOJ】3052:[wc2013]糖果公园树分块+带修改莫队算法

【题目】#58.【WC2013】糖果公园【题意】给定n个点的树,m种糖果,每个点有糖果ci。给定n个数wi和m个数vi,第i颗糖果第j次品尝的价值是v(i)*w(j)。q次询问一条链上每个点价值

【题目】#58. 【WC2013】糖果公园

【题意】给定n个点的树,m种糖果,每个点有糖果ci。给定n个数wi和m个数vi,第i颗糖果第j次品尝的价值是v(i)*w(j)。q次询问一条链上每个点价值的和或修改一个点的糖果ci。n,m,q<=10^5。

【算法】树分块+带修改莫队算法

【题解】参考:WC 2013 糖果公园 park 题解   by vfleaking

首先树分块,参考王室联邦的方法。确定块大小为B,一遍DFS可以分成若干大小为[B,3B]的块,性质是块内两点距离至多为B。

定义(x,y,t)表示询问经过了t次修改的树链x-y的答案,将询问排序:第一关键字belong[x],第二关键字belong[y],第三关键字t。

对于一个询问,要考虑从上一次询问(x',y',t')转移。首先转移t,只需要记录每次修改前和修改后的数值,就可以实现修改或逆修改了。

然后是从树链x'-y'转移到树链x-y‘,这里需要异或操作(对称差)。所谓异或操作,就是如果x标记过就减去答案并消除标记,如果x没标记过就加上答案并增加标记。

具体过程可以参考vfk的公式推导,感性理解也很简单:定义t(x,y)表示除了lca(x,y)的树链x-y,那么 t(x,y') = t(x',y') ^ t(x,x')

有了这个,我们只要在当前基础上异或一下t(x,x')和t(y,y')就可以实现从x'-y'转移到x-y了,当然LCA全部另外算就可以了。

另外,之前修改点x的数值时,如果在当前答案中必须消除,修改,再加入。

【复杂度分析】假设块大小为B。(随便看看就好了,这部分不保证正确……)

如果u和v都不移出块,那么位置移动复杂度O(q*B),时间移动复杂度O(q)。

如果v移出块,那么因为belong[u]只有n/B种可能,位置移动复杂度O(n*n/B)。

如果u移出块,那么位置移动的复杂度O(n)。

而belong[u],belong[v]只有(n/B)^2种可能,所以时间移动的复杂度是O(q*(n/B)^2)。

平衡后B=n^(2/3)。

所以总复杂度O(n^(5/3))。

因为树分块的块大小实际上比B大,所以取B=N^(2/3)*0.5时常数比较优秀。

有一个常数友好的优化,即使询问时如果x所在块编号比y大,那么交换,这样y的移动就会少一半的空间。至多优化一半的常数。

#include
#include
#include
#include
#include
using namespace std;
int read(){
    int s=0,t=1;char c;
    while(!isdigit(c=getchar()))if(c=='-')t=-1;
    do{s=s*10+c-'0';}while(isdigit(c=getchar()));
    return s*t;
}
const int maxn=100010;
int tot,n,m,q,B,top,cnt,c0,c1;
int first[maxn],deep[maxn],f[maxn][20],belong[maxn],st[maxn],num[maxn],c[maxn],w[maxn],v[maxn],pre[maxn];
long long ans,ANS[maxn];
bool vis[maxn];
struct edge{int v,from;}e[maxn*2];
struct C0{int x,y,pre;}a[maxn];
struct C1{int x,y,t,id;}b[maxn];
void insert(int u,int v){tot++;e[tot].v=v;e[tot].from=first[u];first[u]=tot;}
void dfs(int x,int fa){
    int lim=top;
    for(int j=1;(1<1]][j-1];
    for(int i=first[x];i;i=e[i].from)if(e[i].v!=fa){
        deep[e[i].v]=deep[x]+1;
        f[e[i].v][0]=x;
        dfs(e[i].v,x);
        if(top-lim>=B){
            cnt++;
            while(top>lim)belong[st[top--]]=cnt;
        }
    }
    st[++top]=x;
}
int lca(int x,int y){
    if(deep[x]<deep[y])swap(x,y);
    int d=deep[x]-deep[y];
    for(int j=0;(1<if((1<f[x][j];
    if(x==y)return x;
    for(int j=17;j>=0;j--)if((1<f[y][j];
    return f[x][0];
}
void reverse(int x){
    if(vis[x])ans-=1ll*w[num[c[x]]--]*v[c[x]];
    else ans+=1ll*w[++num[c[x]]]*v[c[x]];
    vis[x]^=1;
}
void modify(int x,int y){
    if(!vis[x])c[x]=y;
    else reverse(x),c[x]=y,reverse(x);
}
void solve(int x,int y){
    while(x!=y){
        if(deep[x]>deep[y])reverse(x),x=f[x][0];
        else reverse(y),y=f[y][0];
    }
}
bool cmp(C1 a,C1 b){return belong[a.x]
(belong[a.x]==belong[b.x]&&belong[a.y]==belong[b.y]&&a.t<b.t);}

int main(){
    n=read();m=read();q=read();
    for(int i=1;i<=m;i++)v[i]=read();
    for(int i=1;i<=n;i++)w[i]=read();
    for(int i=1;i){                      
        int u=read(),v=read();
        insert(u,v);insert(v,u);
    }
    B=pow(n,2.0/3)*0.5;
    dfs(1,0);
    while(top)belong[st[top--]]=cnt;
    for(int i=1;i<=n;i++)c[i]=pre[i]=read();
    for(int i=1;i<=q;i++){
        int kind=read(),x=read(),y=read();
        if(!kind){
            a[++c0]=(C0){x,y,pre[x]},pre[x]=y;
        }
        else{
            b[++c1]=(C1){x,y,c0,c1};
            if(belong[b[c1].x]>belong[b[c1].y])swap(b[c1].x,b[c1].y);
        }
    }
    sort(b+1,b+c1+1,cmp);
    for(int i=1;i<=b[1].t;i++)modify(a[i].x,a[i].y);
    solve(b[1].x,b[1].y);
    int c=lca(b[1].x,b[1].y);
    reverse(c);ANS[b[1].id]=ans;reverse(c);
    for(int i=2;i<=c1;i++){
        for(int j=b[i-1].t+1;j<=b[i].t;j++)modify(a[j].x,a[j].y);
        for(int j=b[i-1].t;j>b[i].t;j--)modify(a[j].x,a[j].pre);
        solve(b[i-1].x,b[i].x);solve(b[i-1].y,b[i].y);
        int c=lca(b[i].x,b[i].y);
        reverse(c);ANS[b[i].id]=ans;reverse(c);
    }
    for(int i=1;i<=c1;i++)printf("%lld\n",ANS[i]);
    return 0;
}
View Code

 

这道题主要是树上莫队和带修改莫队的结合:

1.树上莫队没有什么高论,就是把分块换成树分块,然后转移区间的时候使用(x,x')和(y,y')而已。

2.待修改莫队一个是关键字排序,另一个是对称差操作。

然后本题之所以必须考虑分块,是因为询问的信息是需要整条链的每个节点的信息,这不得不对链暴力。


推荐阅读
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • golang常用库:配置文件解析库/管理工具viper使用
    golang常用库:配置文件解析库管理工具-viper使用-一、viper简介viper配置管理解析库,是由大神SteveFrancia开发,他在google领导着golang的 ... [详细]
  • 本文详细探讨了KMP算法中next数组的构建及其应用,重点分析了未改良和改良后的next数组在字符串匹配中的作用。通过具体实例和代码实现,帮助读者更好地理解KMP算法的核心原理。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • Explore how Matterverse is redefining the metaverse experience, creating immersive and meaningful virtual environments that foster genuine connections and economic opportunities. ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 深入理解 SQL 视图、存储过程与事务
    本文详细介绍了SQL中的视图、存储过程和事务的概念及应用。视图为用户提供了一种灵活的数据查询方式,存储过程则封装了复杂的SQL逻辑,而事务确保了数据库操作的完整性和一致性。 ... [详细]
  • 使用 Azure Service Principal 和 Microsoft Graph API 获取 AAD 用户列表
    本文介绍了一段通用代码示例,该代码不仅能够操作 Azure Active Directory (AAD),还可以通过 Azure Service Principal 的授权访问和管理 Azure 订阅资源。Azure 的架构可以分为两个层级:AAD 和 Subscription。 ... [详细]
  • 本文详细介绍了 GWT 中 PopupPanel 类的 onKeyDownPreview 方法,提供了多个代码示例及应用场景,帮助开发者更好地理解和使用该方法。 ... [详细]
  • 本文介绍如何使用Objective-C结合dispatch库进行并发编程,以提高素数计数任务的效率。通过对比纯C代码与引入并发机制后的代码,展示dispatch库的强大功能。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • 本文基于刘洪波老师的《英文词根词缀精讲》,深入探讨了多个重要词根词缀的起源及其相关词汇,帮助读者更好地理解和记忆英语单词。 ... [详细]
author-avatar
king1994
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有