热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【BZOJ4424】Cf19EFairyDFS树

【BZOJ4424】Cf19EFairyDescription给定n个点,m条边的无向图,可以从图中删除一条边,问删除哪些边可以使图变成一个二分图。给定n个点,m条边的无向图,可以
【BZOJ4424】Cf19E Fairy

Description

给定 n 个点,m 条边的无向图,可以从图中删除一条边,问删除哪些边可以使图变成一个二分图。

Input

第 1 行包含两个整数 n,m。分别表示点数和边数。
第 2 到 m+1 行每行两个数 x,y 表示有一条(x,y)的边。

Output

输出第一行一个整数,表示能删除的边的个数。
接下来一行按照从小到大的顺序输出边的序号。

Sample Input

4 4
1 2
1 3
2 4
3 4

Sample Output

4
1 2 3 4

HINT

100%的数据,n,m<=1000000

题解:先建出DFS树,然后每条非树边都对应一个简单环。找出所有奇环偶环及其覆盖的树边,然后分类讨论:

如果没有奇环,那么删哪条边都行。
如果只有一个奇环,那么可以删它覆盖的树边,也可以删这条非树边。
如果有多个奇环,那么必须删掉被所有奇环都覆盖的边。

但是问题来了,奇环+偶环=奇环,也就意味着如果一条边即被奇环覆盖也被偶环覆盖,那么删掉这条边是没有的,判掉就好。

#include 
#include 
#include 
using namespace std;
const int maxn=1000010;
int n,m,sum,ans,cnt;
int f[maxn],to[maxn<<1],next[maxn<<1],ont[maxn<<1],head[maxn],pa[maxn],pb[maxn],vis[maxn],dep[maxn];
int fa[20][maxn],Log[maxn],pc[maxn],s1[maxn],s0[maxn],from[maxn],ok[maxn];
int find(int x)
{
	return (f[x]==x)?x:(f[x]=find(f[x]));
}
inline void add(int a,int b)
{
	to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
void dfs1(int x)
{
	vis[x]=1;
	for(int i=head[x];i!=-1;i=next[i])	if(!vis[to[i]])
		ont[i]=1,fa[0][to[i]]=x,dep[to[i]]=dep[x]+1,from[to[i]]=(i>>1)+1,dfs1(to[i]);
}
inline int lca(int a,int b)
{
	if(dep[a]=0;i--)	if(dep[fa[i][a]]>=dep[b])	a=fa[i][a];
	if(a==b)	return a;
	for(int i=Log[dep[a]];i>=0;i--)	if(fa[i][a]!=fa[i][b])	a=fa[i][a],b=fa[i][b];
	return fa[0][a];
}
void dfs2(int x)
{
	for(int i=head[x];i!=-1;i=next[i])	if(ont[i])	dfs2(to[i]),s1[x]+=s1[to[i]],s0[x]+=s0[to[i]];
}
inline int rd()
{
	int ret=0,f=1;	char gc=getchar();
	while(gc<‘0‘||gc>‘9‘)	{if(gc==‘-‘)	f=-f;	gc=getchar();}
	while(gc>=‘0‘&&gc<=‘9‘)	ret=ret*10+(gc^‘0‘),gc=getchar();
	return ret*f;
}
int main()
{
	n=rd(),m=rd();
	int i,j;
	memset(head,-1,sizeof(head));
	for(i=1;i<=n;i++)	f[i]=i;
	for(i=1;i<=m;i++)
	{
		pa[i]=rd(),pb[i]=rd(),add(pa[i],pb[i]),add(pb[i],pa[i]);
		if(find(pa[i])!=find(pb[i]))	f[f[pa[i]]]=f[pb[i]];
	}
	for(i=1;i<=n;i++)	if(!vis[i])	dep[i]=1,dfs1(i);
	for(i=2;i<=n;i++)	Log[i]=Log[i>>1]+1;
	for(j=1;(1<

【BZOJ4424】Cf19E Fairy DFS树


推荐阅读
  • 探讨 HDU 1536 题目,即 S-Nim 游戏的博弈策略。通过 SG 函数分析游戏胜负的关键,并介绍如何编程实现解决方案。 ... [详细]
  • 利用Selenium与ChromeDriver实现豆瓣网页全屏截图
    本文介绍了一种使用Selenium和ChromeDriver结合Python代码,轻松实现对豆瓣网站进行完整页面截图的方法。该方法不仅简单易行,而且解决了新版Selenium不再支持PhantomJS的问题。 ... [详细]
  • 嵌入式开发环境搭建与文件传输指南
    本文详细介绍了如何为嵌入式应用开发搭建必要的软硬件环境,并提供了通过串口和网线两种方式将文件传输到开发板的具体步骤。适合Linux开发初学者参考。 ... [详细]
  • 鼠标悬停出现提示信息怎么做
    概述–提示:指启示,提起注意或给予提醒和解释。在excel中会经常用到给某个格子增加提醒信息,比如金额提示输入数值或最大长度值等等。设置方式也有多种,简单的,仅为单元格插入批注就可 ... [详细]
  • 深入解析动态代理模式:23种设计模式之三
    在设计模式中,动态代理模式是应用最为广泛的一种代理模式。它允许我们在运行时动态创建代理对象,并在调用方法时进行增强处理。本文将详细介绍动态代理的实现机制及其应用场景。 ... [详细]
  • 深入理解ExtJS:从入门到精通
    本文详细介绍了ExtJS的功能及其在大型企业前端开发中的应用。通过实例和详细的文件结构解析,帮助初学者快速掌握ExtJS的核心概念,并提供实用技巧和最佳实践。 ... [详细]
  • 通常情况下,修改my.cnf配置文件后需要重启MySQL服务才能使新参数生效。然而,通过特定命令可以在不重启服务的情况下实现配置的即时更新。本文将详细介绍如何在线调整MySQL配置,并验证其有效性。 ... [详细]
  • 本题要求在一组数中反复取出两个数相加,并将结果放回数组中,最终求出最小的总加法代价。这是一个经典的哈夫曼编码问题,利用贪心算法可以有效地解决。 ... [详细]
  • 本文探讨了C++编程中理解代码执行期间复杂度的挑战,特别是编译器在程序运行时生成额外指令以确保对象构造、内存管理、类型转换及临时对象创建的安全性。 ... [详细]
  • 解决TensorFlow CPU版本安装中的依赖问题
    本文记录了在安装CPU版本的TensorFlow过程中遇到的依赖问题及解决方案,特别是numpy版本不匹配和动态链接库(DLL)错误。通过详细的步骤说明和专业建议,帮助读者顺利安装并使用TensorFlow。 ... [详细]
  • 探索新一代API文档工具,告别Swagger的繁琐
    对于后端开发者而言,编写和维护API文档既繁琐又不可或缺。本文将介绍一款全新的API文档工具,帮助团队更高效地协作,简化API文档生成流程。 ... [详细]
  • 本文探讨了在构建应用程序时,如何对不同类型的数据进行结构化设计。主要分为三类:全局配置、用户个人设置和用户关系链。每种类型的数据都有其独特的用途和应用场景,合理规划这些数据结构有助于提升用户体验和系统的可维护性。 ... [详细]
  • Linux中的yum安装软件
    yum俗称大黄狗作用:解决安装软件包的依赖关系当安装依赖关系的软件包时,会将依赖的软件包一起安装。本地yum:需要yum源,光驱挂载。yum源:(刚开始查看yum源中的内容就是上图 ... [详细]
  • 气象对比分析
    本文探讨了不同地区和时间段的天气模式,通过详细的图表和数据分析,揭示了气候变化的趋势及其对环境和社会的影响。 ... [详细]
  • 使用JS、HTML5和C3创建自定义弹出窗口
    本文介绍如何结合JavaScript、HTML5和C3.js来实现一个功能丰富的自定义弹出窗口。通过具体的代码示例,详细讲解了实现过程中的关键步骤和技术要点。 ... [详细]
author-avatar
恐龙
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有