而且发现我所看的博客都或多或少存在一些问题,所以不再贴他们的博客地址了。
定义:一个函数\(f(x)\),当x包含平方因子的时候,\(f(x)=0\),否则\(f(x)=1\)
定义:一个函数\(sum(x)=\sum_{i=1}^x i\)
(如果你觉得下面的过程太冗杂了,请跳过大括号区域内的过程)
——————————————————————————————————
首先假设\(n,那么我们的答案最初为:
\(\sum_{i=1}^n\sum_{j=1}^m\ lcm(i,j)*f(gcd(i,j))\)
\(=\sum_{p=1}^n\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{p}*f(p)*[gcd(i,j)=p]\)
\(=\sum_{p=1}^n\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}\ pij*f(p)*[gcd(i,j)=1]\)
\(=\sum_{p=1}^n\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}\ pij*f(p) \sum_{d|gcd(i,j)}\mu(d)\)
\({\)
\(=\sum_{p=1}^n\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}\ pij*f(p) \sum_{d|gcd(i,j)}\mu(d)\)
\(=\sum_{p=1}^n\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}\ pij*f(p) \sum_{d|i\bigwedge d|j}\mu(d)\)
\(=\sum_{p=1}^n p*f(p)\sum_{d=1}^{\lfloor\frac{n}{p}\rfloor}\mu(d)\sum_{i=1\bigwedge d|i}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1\bigwedge d|j}^{\lfloor\frac{m}{p}\rfloor}\ ij\)
\(=\sum_{p=1}^n p*f(p)\sum_{d=1}^{\lfloor\frac{n}{p}\rfloor}\mu(d)\sum_{i=1\bigwedge d|i}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1\bigwedge d|j}^{\lfloor\frac{m}{p}\rfloor}\ ij\)
\(}\)
\(=\sum_{p=1}^n p*f(p)\sum_{d=1}^{\lfloor\frac{n}{p}\rfloor}\mu(d)\sum_{i=1}^{\lfloor\frac{n}{pd}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{pd}\rfloor}\ ijd^2\)
\(=\sum_{p=1}^n p*f(p)\sum_{d=1}^{\lfloor\frac{n}{p}\rfloor}\mu(d)*{d^2}sum({\lfloor\frac{n}{pd}\rfloor})sum({\lfloor\frac{m}{pd}\rfloor})\)
——————————————————————————————————
令\(k=pd\),则\(p|k\),那么我们可以把sum函数提出并将式子整理得:
\(\sum_{k=1}^n sum({\lfloor\frac{n}{k}\rfloor})sum({\lfloor\frac{m}{k}\rfloor})*\sum_{p|k} p*f(p)*\mu(\frac{k}{p})*{({\frac{k}{p})}^2}\)
设\(h(k)=\sum_{p|k} p*f(p)*\mu(\frac{k}{p})*{({\frac{k}{p})}^2}\),则可化简为:
\(\sum_{k=1}^n sum({\lfloor\frac{n}{k}\rfloor})sum({\lfloor\frac{m}{k}\rfloor})*h(k)\)
显然\(h(k)\)之前的那部分可以通过分块来实现\(O(\sqrt{n})\)求解,那么现在关键问题是求\(h(k)\)。
根据各种迷之推导我们得出\(h(k)\)为积性函数,则我们可以用线性筛来求\(h(k)\)。
分情况讨论,当\(k\)为质数的时候,显然带入解得\(h(k)=k(1-k)\)。
当\(k\)不为质数的时候,我们可以表示为\(k=x*p\)(p为质数),如果\(x\)与\(p\)互质的话可以直接相乘,否则:
首先对\(x\)分解质因数为\(x={p1^{q1}}{p2^{q2}}{p3^{q3}}...{pk^{qk}}\),假设\(p=p1\),那么显然:
当\(q1>=2\)时\(f(x*p1)=0\),显然此时\(h(x*p1)=0\)。
当\(q1=1\)时\(h(x*p1)=h(x/p1)*h(p1^2)\)(显然\(x/p1\)和\(p1^2\)互质)
而\(h(p^2)=1*f(1)*\mu(p^2)*{p^4}+p*f(p)*\mu(1)*{p^2}+{p^2}*f({p^2})*\mu(1)*1\)
\(=0-3p+0=-3p\)
\(\therefore h(x*p1)=-3p1*h(x/p1)\)
#include
#include
#include
#include
#include
#include
#include
using namespace std;
const int N=4000010;
const int p=(1<<30)-1;
int f[N],su[N],g[N];
bool he[N];
inline int s(int x){
return x*(x+1)>>1;
}
void Euler(int n){
int tot=0;
f[1]=1;
for(int i=2;i<=n;i++){
if(!he[i]){
su[++tot]=i;
f[i]=i*(1-i);
}
for(int j=1;j<=tot;j++){
int t=i*su[j];
if(t>n)break;
he[t]=1;
if(i%su[j]==0){
int x=i/su[j];
if(x%su[j])f[t]=-su[j]*su[j]*su[j]*f[x];
else f[t]=0;
break;
}
else f[t]=f[i]*f[su[j]];
}
}
for(int i=1;i<=n;i++)f[i]+=f[i-1];
return;
}
int main(){
Euler(4000000);
int t;
scanf("%d",&t);
while(t--){
int n,m,ans=0;
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
for(int i=1,j;i<=n;i=j+1){
j=min(n/(n/i),m/(m/i));
ans+=(f[j]-f[i-1])*s(n/i)*s(m/i);
}
printf("%d\n",ans&p);
}
return 0;
}