作者:Toby_魚5902 | 来源:互联网 | 2023-10-13 10:30
【BZOJ2437】【NOI2011】兔兔与蛋蛋(博弈论,二分图匹配)题面BZOJ题解考虑一下暴力吧。对于每个状态,无非就是要考虑它是否是必胜状态这个直接用\(dfs\)爆搜即可。
【BZOJ2437】【NOI2011】兔兔与蛋蛋(博弈论,二分图匹配)
题面
BZOJ
题解
考虑一下暴力吧。
对于每个状态,无非就是要考虑它是否是必胜状态
这个直接用\(dfs\)爆搜即可。
这样子对于每一次操作,考虑兔兔操作后的状态是否是必胜状态
如果这个状态是必胜状态,并且蛋蛋操作完后的状态是(兔兔的)必败状态
那么这就是一个“犯错误”的操作。
这样暴力可以拿到\(75pts\)
#include
#include
#include
#include
#include
#include
#include
#include
观察一下基本的事实。
考虑走的方案是否可能出现一个环。
无论环有多大,似乎都是一样的,所以我们就考虑在\(2\times 2\)的方格中移动
初始时空格在\((1,1)\),它和\((1,2)\)交换位置,此时,\((1,1)\)为白
然后\((1,2)\)和\((2,2)\)交换位置,\((1,2)\)为黑
\((2,2)\)和\((2,1)\)交换位置,\((2,2)\)为白
此时如果\((2,1)\)能与\((1,1)\)交换位置,那么\((1,1)\)需要是黑色
但是\((1,1)\)是白色,所以显然不能成环。
对于一个更大的环,无非是长\(+1\)或者宽\(+1\)拓展出来的,每次多走两步,对于黑白没有影响。
既然不能成环,意味着每个点只会被经过一次。
那么,我们可以重新开一下这个过程,可以理解为从空格开始,
走一条路径,路径上黑白相间。
黑白相间?有点像二分图的感觉。每条增广路不就是黑白相间吗?
因为先手的是白格子,所以可以把空格开成黑格子
这样子就是要从这个黑格子这里找一条增广路出去。
再考虑一下胜利的情况,如果先手胜利,那么从黑格子连向了一个白格子
然后找不到增广路了,此时白格子胜。
继续把这个情况向上拓展,我们可以得到。
如果当前点一定在二分图的最大匹配中,那么先手必胜。因为先手始终可以沿着最大匹配的匹配边走,而最大匹配中交错路的数量为奇数条,也就是进行奇数次操作,意味着后手最后无法操作,此时先手必胜。
那么,每次进行判定当前点是否在二分图的最大匹配中,是否一定被选中即可判定先手是否必胜,依次可以计算答案。
至于如何计算当前点是否一定在二分图的最大匹配中?
把当前点给\(ban\)掉,在增广的时候强行不选,然后对其匹配点进行增广,
如果能够找到新的增广路,意为这当前点可以被替代,
否则当前点一定在最大匹配中。
这题好神仙啊
#include
#include
#include
#include
#include
#include
#include
#include