热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

BERT原理解析转载

原文地址: https:terrifyzhao.github.io20190218BERT原理.htmlBert其实并没有过多的结构方面的创新点,其和GPT一样均是采用的trans

 

Bert其实并没有过多的结构方面的创新点,其和GPT一样均是采用的transformer的结构,相对于GPT来说,其是双向结构的,而GPT是单向的,如下图所示

技术分享图片

 

 

结构

先看下bert的内部结构,官网提供了两个版本,L表示的是transformer的层数,H表示输出的维度,A表示mutil-head attention的个数:

技术分享图片

 

 从模型的层数来说其实已经很大了,但是由于transformer的residual模块,层数并不会引起梯度消失等问题,但是并不代表层数越多效果越好,有论点认为低层偏向于语法特征学习,高层偏向于语义特征学习。

 

BERT的预训练过程

接下来我们看看BERT的预训练过程,BERT的预训练阶段采用了两个独有的非监督任务,一个是Masked Language Model,还有一个是Next Sentence Prediction。

 

Masked Language Model

mlm可以理解为完形填空,作者会随机mask每一个句子中15%的词,用其上下文来做预测,例如:my dog is hairy → my dog is [MASK]

此处将hairy进行了mask处理,然后采用非监督学习的方法预测mask位置的词是什么,但是该方法有一个问题,因为是mask15%的词,其数量已经很高了,这样就会导致某些词在fine-tuning阶段从未见过,为了解决这个问题,作者做了如下的处理:

-> 80%的时间是采用[mask],my dog is hairy → my dog is [MASK]
-> 10%的时间是随机取一个词来代替mask的词,my dog is hairy -> my dog is apple
-> 10%的时间保持不变,my dog is hairy -> my dog is hairy

那么为啥要以一定的概率使用随机词呢?这是因为transformer要保持对每个输入token分布式的表征,否则Transformer很可能会记住这个[MASK]就是"hairy"。至于使用随机词带来的负面影响,文章中说了,所有其他的token(即非"hairy"的token)共享15%*10% = 1.5%的概率,其影响是可以忽略不计的。

 

Next Sentence Prediction

选择一些句子对A与B,其中50%的数据B是A的下一条句子,剩余50%的数据B是语料库中随机选择的,学习其中的相关性,添加这样的预训练的目的是目前很多NLP的任务比如QA和NLI都需要理解两个句子之间的关系,从而能让预训练的模型更好的适应这样的任务。

输入

bert的输入可以是单一的一个句子或者是句子对,实际的输入值包括了三个部分,分别是token embedding词向量,segment embedding句向量,每个句子有个句子整体的embedding项对应给每个单词,还有position embedding位置向量,这三个部分相加形成了最终的bert输入向量。

技术分享图片

 

 

 

 

传统的句向量

对于传统的句向量生成方式,更多的是采用word embedding的方式取加权平均,该方法有一个最大的弊端,那就是无法理解上下文的语义,同一个词在不同的语境意思可能不一样,但是却会被表示成同样的word embedding,BERT生成句向量的优点在于可理解句意,并且排除了词向量加权引起的误差。

BERT句向量

BERT的包括两个版本,12层的transformer与24层的transformer,官方提供了12层的中文模型,下文也将会基于12层的模型来讲解。

每一层transformer的输出值,理论上来说都可以作为句向量,但是到底应该取哪一层呢,根据hanxiao大神的实验数据,最佳结果是取倒数第二层,最后一层的值太接近于目标,前面几层的值可能语义还未充分的学习到。

 


推荐阅读
  • 本文详细介绍了Java代码分层的基本概念和常见分层模式,特别是MVC模式。同时探讨了不同项目需求下的分层策略,帮助读者更好地理解和应用Java分层思想。 ... [详细]
  • 本文介绍了一种支付平台异步风控系统的架构模型,旨在为开发类似系统的工程师提供参考。 ... [详细]
  • 使用 Git Rebase -i 合并多个提交
    在开发过程中,频繁的小改动往往会生成多个提交记录。为了保持代码仓库的整洁,我们可以使用 git rebase -i 命令将多个提交合并成一个。 ... [详细]
  • 如果应用程序经常播放密集、急促而又短暂的音效(如游戏音效)那么使用MediaPlayer显得有些不太适合了。因为MediaPlayer存在如下缺点:1)延时时间较长,且资源占用率高 ... [详细]
  • 网络爬虫的规范与限制
    本文探讨了网络爬虫引发的问题及其解决方案,重点介绍了Robots协议的作用和使用方法,旨在为网络爬虫的合理使用提供指导。 ... [详细]
  • 本文介绍了 AngularJS 中的 $compile 服务及其用法,通过示例代码展示了如何使用 $compile 动态编译和链接 HTML 元素。 ... [详细]
  • [c++基础]STL
    cppfig15_10.cppincludeincludeusingnamespacestd;templatevoidprintVector(constvector&integer ... [详细]
  • ZooKeeper 入门指南
    本文将详细介绍ZooKeeper的工作机制、特点、数据结构以及常见的应用场景,包括统一命名服务、统一配置管理、统一集群管理、服务器动态上下线和软负载均衡。 ... [详细]
  • 自动验证时页面显示问题的解决方法
    在使用自动验证功能时,页面未能正确显示错误信息。通过使用 `dump($info->getError())` 可以帮助诊断和解决问题。 ... [详细]
  • 本文详细介绍了如何解决DNS服务器配置转发无法解析的问题,包括编辑主配置文件和重启域名服务的具体步骤。 ... [详细]
  • 数字资产量化交易通过大数据分析,以客观的方式制定交易决策,有效减少人为的主观判断和情绪影响。本文介绍了几种常见的数字资产量化交易策略,包括搬砖套利和趋势交易,并探讨了量化交易软件的开发前景。 ... [详细]
  • 自定义滚动条美化页面内容
    当页面内容超出显示范围时,为了提升用户体验和页面美观,通常会添加滚动条。如果默认的浏览器滚动条无法满足设计需求,我们可以自定义一个符合要求的滚动条。本文将详细介绍自定义滚动条的实现过程。 ... [详细]
  • importpymysql#一、直接连接mysql数据库'''coonpymysql.connect(host'192.168.*.*',u ... [详细]
  • 微软推出Windows Terminal Preview v0.10
    微软近期发布了Windows Terminal Preview v0.10,用户可以在微软商店或GitHub上获取这一更新。该版本在2月份发布的v0.9基础上,新增了鼠标输入和复制Pane等功能。 ... [详细]
  • Framework7:构建跨平台移动应用的高效框架
    Framework7 是一个开源免费的框架,适用于开发混合移动应用(原生与HTML混合)或iOS&Android风格的Web应用。此外,它还可以作为原型开发工具,帮助开发者快速创建应用原型。 ... [详细]
author-avatar
佛祖上帝真主保佑我
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有