热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Azkaban(三)Azkaban的使用

界面介绍首页有四个菜单projects:最重要的部分,创建一个工程,所有flows将在工程中运行。scheduling:显示定时任务executing:显示当前运行的任务histo

界面介绍

《Azkaban(三)Azkaban的使用》

首页有四个菜单

  • projects:最重要的部分,创建一个工程,所有flows将在工程中运行。
  • scheduling:显示定时任务
  • executing:显示当前运行的任务
  • history:显示历史运行任务

介绍projects部分

概念介绍

创建工程:创建之前我们先了解下之间的关系,一个工程包含一个或多个flows,一个flow包含多个job。job是你想在azkaban中运行的一个进程,可以是简单的linux命令,可是java程序,也可以是复杂的shell脚本,当然,如果你安装相关插件,也可以运行插件。一个job可以依赖于另一个job,这种多个job和它们的依赖组成的图表叫做flow

1、Command 类型单一 job 示例

(1)首先创建一个工程,填写名称和描述

《Azkaban(三)Azkaban的使用》

(2)点击创建之后

《Azkaban(三)Azkaban的使用》

Flows:工作流程,有多个job组成
Permissions:权限管理
Project Logs:工程日志

(3)job的创建

创建job很简单,只要创建一个以.job结尾的文本文件就行了,例如我们创建一个工作,用来打印hello,名字叫做command.job

#command.job

type=command

command=echo ‘hello’

一个简单的job就创建好了,解释下,type的command,告诉azkaban用unix原生命令去运行,比如原生命令或者shell脚本,当然也有其他类型,后面说。

一个工程不可能只有一个job,我们现在创建多个依赖job,这也是采用azkaban的首要目的。

(4)将 job 资源文件打包

注意:只能是zip格式

《Azkaban(三)Azkaban的使用》

(5)通过 azkaban web 管理平台创建 project 并上传压缩包

《Azkaban(三)Azkaban的使用》

 

《Azkaban(三)Azkaban的使用》

 

《Azkaban(三)Azkaban的使用》

 

《Azkaban(三)Azkaban的使用》

 

《Azkaban(三)Azkaban的使用》

2、Command 类型多 job 工作流 flow

(1)创建项目

我们说过多个jobs和它们的依赖组成flow。怎么创建依赖,只要指定dependencies参数就行了。比如导入hive前,需要进行数据清洗,数据清洗前需要上传,上传之前需要从ftp获取日志。
定义5个job:

1、o2o_2_hive.job:将清洗完的数据入hive库

2、o2o_clean_data.job:调用mr清洗hdfs数据

3、o2o_up_2_hdfs.job:将文件上传至hdfs

4、o2o_get_file_ftp1.job:从ftp1获取日志

5、o2o_get_file_fip2.job:从ftp2获取日志

依赖关系:
3依赖4和5,2依赖3,1依赖2,4和5没有依赖关系。

o2o_2_hive.job

type=command
# 执行sh脚本,建议这样做,后期只需维护脚本就行了,azkaban定义工作流程
command=sh /job/o2o_2_hive.sh
dependencies=o2o_clean_data

o2o_clean_data.job

type=command
# 执行sh脚本,建议这样做,后期只需维护脚本就行了,azkaban定义工作流程
command=sh /job/o2o_clean_data.sh
dependencies=o2o_up_2_hdfs

o2o_up_2_hdfs.job

type=command
#需要配置好hadoop命令,建议编写到shell中,可以后期维护
command=hadoop fs -put /data/*
#多个依赖用逗号隔开
dependencies=o2o_get_file_ftp1,o2o_get_file_ftp2

o2o_get_file_ftp1.job

type=command
command=wget "ftp://file1" -O /data/file1

o2o_get_file_ftp2.job

type=command
command=wget "ftp:file2" -O /data/file2

可以运行unix命令,也可以运行python脚本(强烈推荐)。将上述job打成zip包。
ps:为了测试流程,我将上述command都改为echo +相应命令

《Azkaban(三)Azkaban的使用》

《Azkaban(三)Azkaban的使用》

《Azkaban(三)Azkaban的使用》

《Azkaban(三)Azkaban的使用》

《Azkaban(三)Azkaban的使用》

(2)上传

 《Azkaban(三)Azkaban的使用》

《Azkaban(三)Azkaban的使用》

《Azkaban(三)Azkaban的使用》

点击o2o_2_hive进入流程,azkaban流程名称以最后一个没有依赖的job定义的。

《Azkaban(三)Azkaban的使用》

右上方是配置执行当前流程或者执行定时流程。

《Azkaban(三)Azkaban的使用》

说明

Flow view:流程视图。可以禁用,启用某些job
Notification:定义任务成功或者失败是否发送邮件
Failure Options:定义一个job失败,剩下的job怎么执行
Concurrent:并行任务执行设置
Flow Parametters:参数设置。

(3)执行一次

设置好上述参数,点击execute。

《Azkaban(三)Azkaban的使用》

绿色代表成功蓝色是运行红色是失败。可以查看job运行时间,依赖和日志,点击details可以查看各个job运行情况。

《Azkaban(三)Azkaban的使用》

 

(4)执行定时任务

《Azkaban(三)Azkaban的使用》

这时候注意到cst了吧,之前需要将配置中时区改为Asia/shanghai。
可以选择”天/时/分/月/周”等执行频率。

《Azkaban(三)Azkaban的使用》

可以查看下次执行时间。

3、操作 MapReduce 任务

(1)创建 job 描述文件

mapreduce_wordcount.job

# mapreduce_wordcount.job
type=command
dependencies=mapreduce_pi
command=/home/hadoop/apps/hadoop-2.7.5/bin/hadoop jar /home/hadoop/apps/hadoop-2.7.5/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.5.jar wordcount /wordcount/input /wordcount/output_azkaban

mapreduce_pi.job

# mapreduce_pi.job
type=command
command=/home/hadoop/apps/hadoop-2.7.5/bin/hadoop jar /home/hadoop/apps/hadoop-2.7.5/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.5.jar pi 5 5

(2)创建 project 并上传 zip 包

《Azkaban(三)Azkaban的使用》

(3)启动执行

《Azkaban(三)Azkaban的使用》

4、Hive 脚本任务

(1) 创建 job 描述文件和 hive 脚本

 Hive 脚本如下

 test.sql

create database if not exists azkaban;
use azkaban;
drop table if exists student;
create table student(id int,name string,sex string,age int,deparment string) row format delimited fields terminated by ',';
load data local inpath '/home/hadoop/student.txt' into table student;
create table student_copy as select * from student;
insert overwrite directory '/aztest/hiveoutput' select count(1) from student_copy;
!hdfs dfs -cat /aztest/hiveoutput/000000_0;
drop database azkaban cascade; 

 Job 描述文件:

hivef.job

# hivef.job
type=command
command=/home/hadoop/apps/apache-hive-2.3.3-bin/bin/hive -f 'test.sql'

(2)将所有 job 资源文件打到一个 zip 包中

(3)在 azkaban 的 web 管理界面创建工程并上传 zip 包

 《Azkaban(三)Azkaban的使用》

《Azkaban(三)Azkaban的使用》

5、启动 job


推荐阅读
  • Hadoop发行版本选择指南:技术解析与应用实践
    本文详细介绍了Hadoop的不同发行版本及其特点,帮助读者根据实际需求选择最合适的Hadoop版本。内容涵盖Apache Hadoop、Cloudera CDH等主流版本的特性及应用场景。 ... [详细]
  • 深入浅出:Hadoop架构详解
    Hadoop作为大数据处理的核心技术,包含了一系列组件如HDFS(分布式文件系统)、YARN(资源管理框架)和MapReduce(并行计算模型)。本文将通过实例解析Hadoop的工作原理及其优势。 ... [详细]
  • 大数据领域的职业路径与角色解析
    本文将深入探讨大数据领域的各种职业和工作角色,帮助读者全面了解大数据行业的需求、市场趋势,以及从入门到高级专业人士的职业发展路径。文章还将详细介绍不同公司对大数据人才的需求,并解析各岗位的具体职责、所需技能和经验。 ... [详细]
  • 使用Python在SAE上开发新浪微博应用的初步探索
    最近重新审视了新浪云平台(SAE)提供的服务,发现其已支持Python开发。本文将详细介绍如何利用Django框架构建一个简单的新浪微博应用,并分享开发过程中的关键步骤。 ... [详细]
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 深入解析Redis内存对象模型
    本文详细介绍了Redis内存对象模型的关键知识点,包括内存统计、内存分配、数据存储细节及优化策略。通过实际案例和专业分析,帮助读者全面理解Redis内存管理机制。 ... [详细]
  • 本文介绍如何通过整合SparkSQL与Hive来构建高效的用户画像环境,提高数据处理速度和查询效率。 ... [详细]
  • 网络攻防实战:从HTTP到HTTPS的演变
    本文通过一系列日记记录了从发现漏洞到逐步加强安全措施的过程,探讨了如何应对网络攻击并最终实现全面的安全防护。 ... [详细]
  • 深入理解Redis的数据结构与对象系统
    本文详细探讨了Redis中的数据结构和对象系统的实现,包括字符串、列表、集合、哈希表和有序集合等五种核心对象类型,以及它们所使用的底层数据结构。通过分析源码和相关文献,帮助读者更好地理解Redis的设计原理。 ... [详细]
  • HBase运维工具全解析
    本文深入探讨了HBase常用的运维工具,详细介绍了每种工具的功能、使用场景及操作示例。对于HBase的开发人员和运维工程师来说,这些工具是日常管理和故障排查的重要手段。 ... [详细]
  • Hybrid 应用的后台接口与管理界面优化
    本文探讨了如何通过优化 Hybrid 应用的后台接口和管理界面,提升用户体验。特别是在首次加载 H5 页面时,为了减少用户等待时间和流量消耗,介绍了离线资源包的管理和分发机制。 ... [详细]
  • Python处理Word文档的高效技巧
    本文详细介绍了如何使用Python处理Word文档,涵盖从基础操作到高级功能的各种技巧。我们将探讨如何生成文档、定义样式、提取表格数据以及处理超链接和图片等内容。 ... [详细]
  • 离线安装Grafana Cloudera Manager插件并监控CDH集群
    本文详细介绍如何离线安装Cloudera Manager (CM) 插件,并通过Grafana监控CDH集群的健康状况和资源使用情况。该插件利用CM提供的API接口进行数据获取和展示。 ... [详细]
  • 本文探讨了Hive作业中Map任务数量的确定方式,主要涉及HiveInputFormat和CombineHiveInputFormat两种InputFormat的分片计算逻辑。通过调整相关参数,可以有效控制Map任务的数量,进而优化Hive作业的性能。 ... [详细]
  • Hadoop MapReduce 实战案例:手机流量使用统计分析
    本文通过一个具体的Hadoop MapReduce案例,详细介绍了如何利用MapReduce框架来统计和分析手机用户的流量使用情况,包括上行和下行流量的计算以及总流量的汇总。 ... [详细]
author-avatar
拍友2502882315
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有